Fault Location via Precise Dynamic Slicing

by

Xiangyu Zhang

A Dissertation Submitted to the Faculty of the
Department of Computer Science

In Partial Ful llment of the Requirements
For the Degree of

Doctor of Philosophy
In the Graduate College

The University of Arizona

2006

Get the o cial approval page
from the Graduate College
beforeyour nal defense.

Statement by Author

This dissertation has been submitted in partial ful liment of requirements for an
advanced degree at The University of Arizona and is depositan the University
Library to be made available to borrowers under rules of theibrary.

Brief quotations from this dissertation are allowable witlout special permission,
provided that accurate acknowledgment of source is made. Reests for permission
for extended quotation from or reproduction of this manusdpt in whole or in part
may be granted by the head of the major department or the Deanf the Graduate
College when in his or her judgment the proposed use of the rea#l is in the interests
of scholarship. In all other instances, however, permissianust be obtained from the
author.

Signed:

Acknowledgements

First of all, I would like to sincerely thank my advisor, Dr. Rajiv Gupta. He is the
person that enrolled me to the department; the person that ntvated me to pursue
the current career; the person that walked me through the vgrrst paper; the person
that stayed up at 4 am in the morning with me for paper deadling the person whom
| learned a lot from, both academic and everyday.

| also greatly appreciate Dr. Neelam Gupta. Her attitude towrds research has
in uenced me a lot.

| am very grateful to Dr. John Kececioglu and Dr. Salim Haririfor their helpful
advice.

| would like to express my gratitude to the other group membar Sriraman
Tallam, Youtao Zhang, Jun Yang, Bengu Li, Vijay Nagarajan, ad Arvind Krish-
naswamy. They have helped me a lot in these years.

| also thank my family, my wife Tiantian Qin, my mother Qiting Liang, my father
Shufan Cheung, and my younger brother Zhenyu Zhang. They atbe ones that

always stand by me.

Finally, 1 would like to thank my one year old { Brian Zhang. Thank him for
waking me up every 3 hours for two months.

List of Figures
List of Tables
Abstract
Chapter 1. Introduction

Chapter 2. The Fault Location Framework

2.1.
2.2.
2.3.
2.4.

Chapter 3. Efficiency of Dependence Profiles

3.1.

3.2.

3.3.
3.4.

3.5.

Chapter 4. Effectiveness of Dynamic Slicing

4.1.
4.2.

4.3.
4.4,
4.5.

Table of Contents

Execution Pro les: The WET Representation
Fault Location: Backward Dynamic Slicing
Challenge One: E cient Pro le Representation
Challenge Two: E ective Fault Location

Optimizations on Data Dependence (DD) edges
3.1.1. (OPT-1)Infer
3.1.2. (OPT-2) Transform
3.1.3. (OPT-3) Redundancy Across Non-Local Def-Use Edges . .
Optimizations on Control Dependence Edges
3.2.1. (OPT-4) Infer Fixed Distance Unique Control Ancesto
3.2.2. (OPT-5) Transform
3.2.3. (OPT-6) Redundancy Across Non-Local Def-Use and ool
Dependence Edges
3.2.4. Completeness of the Optimization Set
DDG Construction and Dynamic Slicing
Experimental Results
3.4.1. Performance Evaluation of OPT
3.4.2. Comparison with Other Algorithms
Summary

Forward Dynamic Slice of Minimal Failure-Inducing Inpit Di erence
Bidirectional Dynamic Slice of a Critical Predicate
4.2.1. Finding the Critical Predicate
4.2.2. Results of Searching for Critical Predicates
Multiple Points Dynamic Slices: Dynamic Chops
Implementation
Experimental Evaluation

10

11

13

18
18
23
26
29

33
34
35
38
42
43
43
44

Table of Contents| Continued
45.1. Applicability oo 87
4.5.2. Dynamic Slice Sizes. 0o 90
4.5.3. Multiple Points Dynamic Slices ?
454, DISCUSSION i 94
4.6. Other Types of Dynamic Slices @
A4.7. SUMMAIY . . . o e e e e e e e e e e e 98
Chapter 5. Efficiency of Value Profiles 100
5.1. Removing Redundancy in Value Proles 100
5.2. Prediction Based Compression of Value Proles 103

5.2.1. Bidirectional compression derived from the FCM prem:tor .. 104
5.2.2. Accounting for the dierence in forward and backwardcom-

pressionrates 106
5.2.3. Bidirectional compression derived from a Last n predor. . . 111
5.2.4. Selection e 111
5.3. Experimental Results, 12
5.3.1. Compression of Value Proles »
5.3.2. Using Prediction Based Compression for Dependencees . 113
5.3.3. Overall Compression of WETs 114
5.4, Summary e e e e e e e 117
Chapter 6. Pruning Backward Dynamic Slices Using Value Pro-
files . . . 118
6.1. Pruning Backward Dynamic Slices. 118
6.2. Condence Analysis. 12
6.3. Experimental Results 33
6.3.1. Benchmarksused 133
6.3.2. Condence-based Pruning 136
6.3.3. Enhancementsto Pruning 141
6.4. SUMMANY e e e e e 143
Chapter 7. Dynamic Slicing of Long Running Programs 145
7.1, OVeIVIEW o e 145
7.2. Execution Fast Forwarding oL 147
7.3. Event Dependence Graph 149
7.3.1. MetaSlicingonEventLog 152
7.4. Replaying with A Reduced EventLog 153
7.5. Experimental Results oL 35
7.6. SUMMANY e e e e e 159

Table of Contents| Continued
Chapter 8. Related Work 160
8.1. Proling e 160
8.2. FaultLocation. e 161
8.2.1. Slicing Based Approaches 162
8.2.2. Statistical Approaches L. 15
8.2.3. State Based Approaches, 164
8.2.4. Static Analysis Based Approaches 165
Chapter 9. Conclusions 167
9.1. Contributions 167
9.2. Future Directions 19
173

References

List of Figures

Figure 2.1. An example: (a) CFG and its control ow trace; (b) WET sub-

graphofnode 8. 22
Figure 2.2. Heap overow buginbc 1:06. 25
Figure 3.1. EectofapplyingOPT-1a. 36
Figure 3.2. Eectof applying OPT-1b. 37
Figure 3.3. EectofapplyingOPT-2a. 38
Figure 3.4. Eectof applying OPT-2b. 40
Figure 3.5. Eectof applying OPT-2c. 42
Figure 3.6. Eectofapplying OPT-3. 43
Figure 3.7. Eectofapplying OPT-4. 44
Figure 3.8. Eectof applying OPT-5a. 45
Figure 3.9. Eectof applying OPT-5b. 46
Figure 3.10. E ect of applying OPT-6. 46
Figure 3.11. Introducing dynamic edges. 51
Figure 3.12. Traversing dependence edges. 25
Figure 3.13. Using shortcuts. 54
Figure 3.14. E ect of various optimizations on DDG size. 55
Figure 3.15. dyDDG vs. dyCDG size reduction. 57
Figure 3.16. Dynamic slicing times of OPT. 59
Figure 3.17. Comparison of OPT with DD and BAS. 62
Figure 4.1. Forward dynamic slice. 68
Figure 4.2. Bueroverowbugin gzip. 70
Figure 4.3. Bidirectional dynamic slice. 4
Figure 4.4. Incorrectoutputbuginex. 73
Figure 4.5. Algorithm overview. 78
Figure 4.6. Searchmethod. 80
Figure 4.7. Multiple points dynamic slices: dynamic chop (left); ad bidi-

rectional dynamic chop (right). 83
Figure 4.8. An example for multiple points dynamic slices {ex v4 84
Figure 4.9. Gzipv3rl. e 98
Figure 5.1. Value compression. 102
Figure 5.2. Four basic operations used by BFCM. 107
Figure 5.3. Forward and backward traversal by a single step. 108
Figure 5.4. Example of bidirectional FCM compression. 109
Figure 5.5. Preparing streams for bidirectional traversal. 110
Figure 5.6. Bidirectional last n compression. 111
Figure 5.7. Relative sizes of WET components. 61

List of Figures] Continued

Figure 5.8. Scalability of compressionratio. 116
Figure 5.9. WET constructiontimes. 117
Figure 6.1. Pruning dynamic slice. 120
Figure 6.2. Pruning dynamic slice. 122
Figure 6.3. Valueproles.. 129
Figure 6.4. Dependences among assignment statements. 130
Figure 6.5. Dependences involving predicates. 132
Figure 6.6. Condence computation algorithm. B4
Figure 6.7. Replacevor2 e 140

Figure 6.8. Pruned dynamic slice for varying threshold (version Miun Rj). 141
Figure 6.9. Locating fault by examining statements in increasingrder of
condence values. 142

Figure 7.1. Execution fast forwarding. 1@
Figure 7.2. Getting the same warning message by replaying the redukclog
for Mutt 1.4.2.1i. The numbers mean the byte positions of theorre-

sponding events inthelog. 148
Figure 7.3. An example of dynamic dependence graph (DDG) and event

dependence graph (EDG). oo 150
Figure 7.4. Another example of event dependence graph. 152

Figure 7.5. An example on reducing the event log. The shaded eventea
those iNn MS(94). e 153

Table
Table
Table
Table

Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table

Table
Table

Table

Table
Table
Table
Table
Table

2.1.
2.2.
2.3.
2.4.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

5.1.
5.2.
5.3.
5.4.

6.1.
6.2.
inputs.
Table 6.3.
inputs.
6.4.

7.1
7.2
7.3.
7.4.
7.5.

10

List of Tables

WET Sizes. e 26
The performance of thelemand drivenalgorithm. 28
Faultsused inthe study. 31
Sizes of backward dynamic slices. 13
DDG size reduction. Lo 56
Bene t of providing shortcuts. ®
Preprocessing time for OPT. 60
Preprocessing time: DD vs. OPT. 64
DDG graph sizes: DDvs. OPT. 64
Slicing times: BAS vs. OPT. 64
Preprocessing time: BAS vs. OPT. 65
Search strategiestEFSvs. PRIOR. 76
Successful/Failed searches. 81
Searchtime. 82
Applicability of dynamic slice types. 88
Comparison of dynamic slice sizes. 92
Sizes of dynamic chops and bidirectional dynamic chops. . . . 93
Summary of dynamic slice sizes. 95
Data slices (DS) and backward dynamic slices (BwS). 96
E ect of compression on value proles. 112
E ect of compression on dependence proles. 113
Dynamic slicing on compressed DDGs (avg. over 25 slices . . 114
WET SIZ€S. e e e e 115
Characteristics of benchmarks 3B
Pruning e ectiveness results of faulty versions for ufp three test
.................................... 137
Pruning e ectiveness results of faulty versions for ut three test
.................................... 138
Summary of results across all versions. 139
Computation table for gure 7.5. b6
Description of the benchmarks n
Performance comparison of di erent execution scenes. 157
Comparison of the eventlogs. 158
Comparison of the dependence graphs. 581

11

Abstract

Developing automated techniques for identifying a fault cadidate set (i.e., subset of
executed statements that contains the faulty code respobée for the failure during a
program run), can greatly reduce the e ort of debugging. Ovel5 years ago precise
dynamic slicing was proposed to identify a fault candidatees as consisting of all
executed statements that in uence the computation of an inarrect value through a
chain of data and/or control dependences. However, the clethige of making precise
dynamic slicing practical has not been addressed. This desgation addresses this
challenge and makes precise dynamic slicing useful for dghing realistic applica-
tions. First, the cost of computing precise dynamic slices greatly reduced. Second,
innovative ways of using precise dynamic slicing are idergd to produce small failure
candidate sets.

The key cause of high space and time cost of precise dynamicisy is the very
large size of dynamic dependence graphs that are construtind traversed for com-
puting dynamic slices. By developing a novel series of optimations the size of the
dynamic dependence graph is greatly reduced leading to a quast representation
that can be rapidly traversed. Average space needed is reddcfrom 2 Gigabytes to
94 Megabytes for dynamic dependence graphs correspondingekecutions with av-
erage lengths of 130 Million instructions. The precise dynac slicing time is reduced
from up to 20 minutes for a demand-driven algorithm to 16 seods. A compres-
sion algorithm is developed to further reduce dependenceagh sizes. The resulting
representation achieves the space e ciency such that the dgamic execution history
of executing a couple of billion instructions can be held in &igabyte of memory.
To further scale precise dynamic slicing to longer progranuns, a novel approach is
proposed that uses checkpointing/logging to enable collean of dynamic history of

only the relevant window of execution.

12

Classical backward dynamic slicing can often produce fautiandidate sets that
contain thousands of statements making the task of identiiyg faulty code very time
consuming for the programmer. Novel techniques are propdsé& improve e ec-
tiveness of dynamic slicing for fault location. The merit othese techniques lies in
identifying multiple forms of dynamic slices in a failed rurand then intersecting them
to produce smaller fault candidate sets. Using these teclgpies, the fault candidate
set size corresponding to the backward dynamic slice is rexba by nearly a factor of
3. A ne-grained statistical pruning technique based on vaile pro les is also devel-
oped and this technique reduces the sizes of backward dynarslices by a factor of
2.5.

In conclusion, this dissertation greatly reduces the cosf precise dynamic slicing

and presents techniques to improve its e ectiveness for flwlocation.

13

Chapter 1
Introduction

Software is pervasive in modern society. Not only does rumg a business depend
on computer software for production, distribution and afte-sales support, but living
everyday life also relies on software for communication, tentainment, and so on. Un-
fortunately, as Mark Paulk from Carnegie Mellon's Univerdy's Software Engineering
Institute noted,\ A fundamental problem with software quality is that programers
make mistake' [5]. Software development is primarily a human activity anl hu-
mans make mistakes. As a result, errors inevitably creep misoftware in spite of the
advances made in the areas of programming languages andwafe development pro-
cesses. The impact of software errors is enormous. Accoglime report of National
Institute of Standards and TechnologyNIST) in 2002, software errors caused the US
economy an estimated $59.5 billion annually, or about 0.6 peent of the gross do-
mestic product(GDP). The loss arose from both the user side and the develomde.
Moreover, the recent progress in computer architecture amagrogramming languages
has given rise to more and more complicated software devatognt procedures, which
in turn make software more and more vulnerable to human miskas. Therefore, how
to improve the quality of software by reducing the number of reors has posed an
imminent challenge to the research community.

To improve the quality of software, both static and dynamic aalyses can be used.
Static analyses [10, 40, 29, 18, 76, 23, 26, 44] have the powkproving a program
is free of certain types of errors. However, static analysésve limitations. First
of all, they are usually accompanied by false positives, .i.eorograms are identi ed
as faulty while they are not. This is due to the conservative ature of underlying

program analyses such as alias analysis. Second, static lgs@s are only capable of

14

verifying certain simple properties. Third, static analyes usually require developers
to provide speci cations, which many developers are reluaht to write. Therefore,
static analyses cannot remove all the software errors.

A software error can manifest itself at runtime as a softwaréailure once it has
escaped detection through static analyses. In such circutasces, dynamic analyses
are needed to detect and locate the error. In recent years, ade variety of dynamic
analyses have been proposed [66, 55, 69, 46, 37, 57, 35, 38 \8dny employ machine
learning or statistical techniques to observe runtime deations from certain invariants
and raise alarms for those anomalies. Others try to understd bugs by doing search
in the program state space. Such techniques produce a faudintlidate set for a failed
run, which is basically a set of statements that include theailty code.

A debugging aid which nds a fault candidate set and tries to xplain the cause-
e ect relations between faulty code and failure through degndences is called program
slicing. This was rst introduced by Mark Weiser [74, 75]. Tle program slice cor-
responding to a variable at a speci ¢ program point is de nedo contain the subset
of program statements which can potentially contribute to he computation of the
value of the variable across all program executions. Weisgave the rst static slicing
algorithm, in which the static slice is computed by taking a tansitive closure over
data and control dependences that directly or indirectly iruence the value of the
variable at a program point. Since the objective of slicingsito focus the attention
of a programmer or an algorithm to a relevant subset of progna statements, conser-
vatively computed and thus usually very large static sliceare undesirable in many
cases.

Realizing this limitation of static slicing in debugging, Korel and Laski proposed
the idea ofdynamic slicing[49]. The dependences that are exercised during a program
execution are captured precisely and saved in form ofdynamic dependence graph
Dynamic program slices are constructed in response to regtee by traversing the

captured dynamic dependence information.

15

The main focus of this dissertation is fault location via preise dynamic slicing.
Although dynamic slicing has been invented for almost two @ades and a lot of
research has been carried out on various dynamic slicing atghms [7, 11, 12, 51, 63]
and also on di erent ways of applying dynamic slicing to fadllocation [48, 20, 50, 6],

there remain two main challenges:

Computation of dynamic slices isine cient in terms of execution time and

space.

Dynamic slices are usually quite large limiting theie ectivenessfor fault loca-

tion.

Computation of dynamic slices requires processing exeautitraces including the
control ow trace, memory trace, and possibly value trace. e time and space re-
guirements are in general proportional to the execution lgth, which makes dynamic
slicing prohibitively expensive if the execution gets longAn execution of 100 Millions
instruction could require up to 2 Gigabytes space, and travsing through such a high
volume of dynamic information to compute a dynamic slice cdédi take minutes. A
few algorithms have been proposed to improve space e ciendy, 12], but they also
have inherent limitations. Most people still consider prase dynamic slicing as an
impractical technique and most of the current implementatins are only applicable
to toy programs and short executions. In this dissertationnovel techniques that
signi cantly improve the e ciency of dynamic slicing are proposed.

The second main challenge is the e ectiveness problem. Gasdynamic slicing
algorithms are quite e ective in containing the root cause®f bugs but usually pro-
duce over-sized slices which may contain thousands of saioode statements. Hence,
manually inspecting these slices often requires tremendoa ort. Conventional algo-
rithms consider only one type of dynamic slice of a failed runvhich is the backward
dynamic slice of wrong output. In this dissertation, other gnamic slices including the

forward dynamic slice of failure inducing input and the bidiectional dynamic slice of

16

a critical predicate are identied. The combinations of thee dynamic slices further
reduce the fault candidate set and improve the e ectivenessf dynamic slicing for
fault location.

The contributions of this dissertation are summarized as flows.

The cost and e ectiveness of traditional precise dynamicising algorithms are
thoroughly studied on realistic programs and executions. He limitations of
existing techniques are identi ed and they serve as the mefition for this dis-

sertation.

A uni ed trace representation, Whole Execution Trace(WET), is designed as
the solution to the e ciency challenge. WET e ciently captures a set of com-
plete traces of an execution including control ow trace, Vae trace, and depen-
dence trace. Sophisticated optimizations are rst applietb remove redundancy
in the traces so that both the time of accessing the traces atide space required
to store the traces are signi cantly reduced. In addition, ageneric compression
technique, which has the novel feature of bidirectional trgersibility, is further

employed to reduce the space consumption. The space e cignachieves 4 bits
per executed instruction. While fault location is the only @plication of WET

in this dissertation, it has a wide variety of other potentid applications such as

software security [85], compiler, and architecture resezn.

One of the key observations presented in this dissertatiors ithat traditional
dynamic slicing techniques have limited e ectiveness in ¢ating faults because
they consider only one type of evidence in the failed run { thevrong output.
In this dissertation, new types of dynamic slices are proped to take advantage

of new types of evidences.

Traditionally, dynamic slices are computed based on depesauice pro les. This

dissertation, for the rst time, shows that value pro les can be used to assign

17

weights to each executed statement, which indicates the ékhood of that ex-
ecuted statement being faulty. Such likelihood estimatesan be used to prune
a pre-computed dynamic slice. The essence of the new techugds that edges
in a dynamic dependence graph should disclose the relialyilof dependences
in addition to the existence of dependences. For example, af dependence
edge represents a one-to-one mapping, the correctness @ tie nition can be
inferred from the correctness of the use, which is not true f@ many-to-one
mapping. This key idea and the proposed technique have the teatial impact

on information ow research as well.

Finally, this dissertation also presents an e ort to scale yhamic slicing to
long running programs by integrating dynamic slicing with dgging/replay tech-

niques.

The rest of the dissertation is organized as follows. In chagy 2, background infor-
mation is given to facilitate understanding of the remainig chapters. The challenges
of e ciency and e ectiveness of precise dynamic slicing ardiscussed in detail and
the corresponding solutions are also brie y mentioned. Inhapter 3, optimizations
on dynamic dependence graphs, which are the basic trace reggntation for dynamic
slicing, are described. Chapter 4 discusses how multipleptgs of dynamic slices can
be used together to improve the e ectiveness of fault locath. In chapter 5, value
pro les are optimized and then compressed using a novel pietion based compres-
sion technique. Chapter 6 explains how value pro les can besed to estimate the
likelihood for a statement execution being faulty. This indrmation can be used to
reduce the size of a fault candidate set. Chapter 7 proposesnhining tracing with
checkpointing such that dynamic slicing can be scaled to mudonger runs. Related
work is discussed in chapter 8. Conclusions and directiornsr ffuture work are given

in chapter 9.

18

Chapter 2
The Fault Location Framework

This chapter begins by providing background information otwo components of the
fault location framework. It rst introduces program execution pro lesthat are col-
lected for the purpose of dynamic analysis. Second, backgnal information on dy-
namic slicing, which is the primary form of dynamic analysis used for faulbcation in
this work, is introduced. Next, the challenges in construatg an e cient and e ective
framework are identi ed so that the resulting framework carbe used in practice for
debugging real applications. This chapter also brie y desibes how these challenges

are addressed in the remainder of this dissertation.

2.1 Execution Proles: The WET Representation

Pro les of di erent kinds have been exploited for variety oftasks such as code opti-
mization [79, 15, 32], architecture design [22, 47, 92], dedging and testing software
[7]. A comprehensive set of pro le data that captures the coptete functional execu-

tion history of a program run must include the following:

Control ow prole. Control ow prole captures the complete control ow

path taken during an execution.

Value pro le; This pro le captures the values that are computed and refereed

by each executed statement. Values may correspond to datdwas or addresses.

Dependence pro le.Dependence pro le captures the information about data/caimol
dependences exercised during an execution. A data depermenepresents the

ow of a value from the statement that de nes it to the statement that uses it

19

as an operand. A control dependence between two statemenpresents that
the execution of one statement depends on the branch outcormata predicate

in the other statement.

Together the above information tells what statements werexecuted and in what
order (control ow pro le), what operands and addresses wer referenced as well as
what results were produced during each statement executiqualue pro le), and the
statement executions on which a given statement executios data/control dependent
(dependence pro le).

A uni ed representation, the Whole Execution Trace (WET), that holds a full
execution history is employed in the framework. WET is essBally a static repre-
sentation of the program that is labeled with the dynamic prde information. This
organization provides a direct access to all of the relevaptro le information asso-
ciated with every execution instance of every statement. Atatement in WET can
correspond to a source level statement, intermediate lev&htement, or a machine in-
struction. However, in the remainder of this section, it is ssumed that each statement
is an intermediate code statement.

In order to represent pro le information of every executiorinstance of every state-
ment, it is clearly necessary to distinguish between execdon instances of statements.
The WET representation distinguishes between execution stances of a statement
by assigning uniguetimestampsto them [89]. To generate the timestamps dme
counter is maintained that is initialized to one and each tire a basic block is exe-
cuted, the current value oftime is assigned as a timestamp to the current execution
instances of all the statements within the basic block and #n time is incremented
by one. Timestamps assigned in this fashion essentially rember the ordering of all
statements executed during a program execution. The notioof timestamps is also

key to representing and accessing the dynamic informatiommtained in WET.

20

The WET is essentially a labeled graph whose form is de ned re A label as-
sociated with a node or an edge in this graph is an ordered seqae where each
element in the sequence represents a subset of pro le infation associated with
an execution instance of a node or edge. The relative ordegiof elements in the
sequence corresponds to the relative ordering of the exdoutinstances. A sequence
of elementse;, e,.. is denoted as ¢,e,:::]. For ease of presentation it is assumed
that each basic block contains one statement, i.e., there @me to one correspondence

between statements and basic blocks.

De nition: The Whole Execution Trace (WET) is represented in form of a laeled
graph G(N; E (CF; CD; DD)) where:

N is the set of statements in the program. Each statemerg 2 N is labeled with a
sequence of ordered pairs<|[ts;vals >] where statements was executed at timets
and it produced the valuevals. Note that in general when a node contains multiple
statements, instead of a single value in each ordered pair,sat of values are used,

each one of which corresponds to a distinct statement in theabic block.

E is the set of edges. The edges are bidirectional so that theagh can be traversed in
either direction. (s! d) denotes direction of the edge that takes us from the source
s of the dependence to the destinationl of the dependence whileq d) is used to

denote the reverse direction. The edges are subdivided irttree disjoint categories.

DD is the set ofdata dependencedges in the program. Each edgesdd !

s) 2 DD is labeled with a sequence of ordered pairs< [ts;tsqq >] Where

21

statements was executed at time s using an operand whose value was produced

by statement sdd at time tgqg.

CD is the set ofcontrol dependenceedges in the program. Each edges¢d!
s) 2 CD is labeled with a sequence of ordered pairs< |ts;tseq >] Where
statements was executed at timdg as a direct result of the outcome of predicate

scd executed at timetgggy.

CF is the set ofcontrol ow edges in the program. These edges analabeled

The example in Figure 2.1 illustrates the form of WET. A contol ow graph and
control ow trace of one possible execution is given in Figer2.1a. Since the entire
WET for the example is too large, the gure only shows the sulygph of WET that
captures the pro le information corresponding to the exedions of node 8. The label
on node 8 says that statement 8 is executed ve times at timestnps 7, 37, 57, 77,
and 97 producing values c, d, d, d, and c respectively. Exeauts of statement 8
are control dependent upon statement 6 and data dependent statements 4, 2 and
15. Therefore CD and DD edges are introduced whose labels e2gs the dependence
relationships between execution instances of statements46 2, and 15 with statement
8. Unlabeled control ow edges connect statement 8 with its redecessor 6 and
successor 9 in the control ow graph.

Next it will be shown how WET can be used to respond to a varietpf useful
gueries for subsets of pro le information. The ability to respond to these queries
demonstrates that the WET representation incorporates albf the control ow, data
and control dependence, value, and address pro le informan.

Control ow path. The path taken by the program can be generated from
WET using the combination of static control ow edges CF) and the sequences of
timestamps associated with nodes\). Ifanode islabeled with<t; >, the node
that is executed next must be labeled with<t +1; >. Using this observation, the

complete path or part of the program path at any execution poit can be generated.

22

Figure 2.1 . An example: (a) CFG and its control ow trace; (b) WET subgraph of
node 8.

23

Values and addresses. The value and address pro les are captured by the
values contained in§ t;v >] sequences associated with nodes. Some values represent
data while others represent addresses { the distinction cdre made by examining the
use of the values. Values produced by executions of a staternean be obtained by
simply examining its K t; v >] sequence. Addresses corresponding to executions of a
speci ¢ statement can be obtained by simply examining the<[t;v >] sequences of
statements that produce the operands for the statement ofterest. On the other hand
the sequence of values (addresses) that are produced (refexed) during program
execution can be extracted by following the control ow pathtaken as described
earlier and then examining the relevank t;v > pair of each node as it is encountered.

Data and control dependences. All instances of data and control dependences
are captured explicitly by labeled edgesGD and DD). Chains of data dependences,
control dependences, or combinations of both types of demmces can all be easily
found by traversing the WET.

The above descriptions already explain the organization cfll types of prole
data in the WET representation which allows variety of quees to be responded
to with ease. Given the large amounts of pro le information,the sizes of WETs
are expected to be extremely large. This dissertation addiges the challenge of
compressing WETs in a manner that does not destroy the ease erciency with

which queries for information can be handled.

2.2 Fault Location: Backward Dynamic Slicing

The essence of fault location is to provide programmers a tagandidate set which
includes the statements that are suspected to be the root csaiof a program failure.
One approach for providing such a fault candidate set dynamic slicing[49]. Consider
a failing run which produces an incorrect output value or crshes due to dereferencing

an illegal memory address. The incorrect output value or thilegal address value is

24

now known to be related to faulty code executed during this fied run. It should be
noted that identi cation of an incorrect output value will r equire help from the user
unless the correct output for the test input being considetkis already available to
us. The fault candidate set is constructed by computing theyhamic slice backward
starting at the incorrect output value or illegal address vae. Before introducing
how dynamic slices are computed, the concept dffnamic dependence grapfbDG)
is de ned based on the WET representation. The nodes in a DDGra the nodes
in WET without timestamp and value labels. The edges in a DDG @ essentially
CD|[DD.

De nition 1. Given a WET, which is a labeled grapi&(Ng; Eo(CF; CD;DD)), the
Dynamic Dependence Graph of a program run, DDGN; E), consists of a set of

nodesN and set of directed edgeB where:
N =fsjs[<ts;vals>] 2 Nog
E=1f(s! dI<tsta>]j(s! d)<tstgy>]2CD[DDg

Let s <tg > denote the execution instance of attime tsand (m! n) <t q;t, >
denote a dynamic data dependence or dynamic control depende of the execution
instance of statementn at time t,, on the execution instance of statementn at t,,.

Now given an executed statemert < t ;¢ >, the backward dynamic slicddDGSlice(s <
ts >) is the subgraph of the DDG from whichs <t > is reachable by following the
forward edges, i.e., the edges from a dependence source t@pethdence destination.
Given aDDG (N; E), DDGSlice(s <tg >) is computed as follows:

DDGSlice(s<ts>)= fNSlice(s<ts>);ESlice(s<ts>g
NSlice(s <ts>)= fs] N Slice(s°< t ¢ >):
8(s¥ s)<t (oits>2E

ESlice(s <ts>)= f(s°! s)<tets> [ESlice(s®< t ¢ >);
8(s¥ s)<t (oits>2E

25

In other words, DDGSlice(s <ts >) is a labeled subgraph of thddDG, and the
edge labels orDDGSlice(s < tg >) are subsets of the corresponding edge labels on
the DDG. During debugging, both the statements in the slice and theephendence
edges that connect them provide useful clues to the failurawse.

A more traditional de nition of a dynamic slice is essentidlyy a set of static state-
ments, which is represented by the set of nodes in tHi@DGSlice. It is also referred

to as the dynamic backward slicBwS) which is given by the following equation:

BwS(s<ts>)= NSlice(s<ts>)

| HS L H%%
& "# (™ O

Figure 2.2 . Heap over ow bug inbc 1:06.

The bene t of backward dynamic slicing is illustrated usingan example of bug in
bc 1:06 which causes a heap over ow error. In this program, a heap bar is not
allocated to be wide enough which causes an over ow. The coderresponding to
the error is shown in Figure 2.2. The heap arragrrays allocated at line number 167
over ows at line 177 causing the program to crash. Therefordne dynamic slice is
computed starting at the address ofarrays[indx] that causes the segmentation fault.
Since the computation of the address involvearrays[] and indx, both statements at
lines 167 and 176 are included in the dynamic slice. By exarmig statements at lines
167 and 176, the cause of the failure becomes evident to thegrammer. It is easy

to see that althougha_count entries have been allocated at line 16%, count entries

26

are accessed according to the loop bounds of tfex statement at line 176. This is

the cause of the heap over ow at line 177.

2.3 Challenge One: E cient Pro le Representation

Although a WET captures the full execution history of a progam run, the size of
WET can be very large. To demonstrate this experiments wereepformed. Table 2.1
lists the benchmarks considered and the lengths of the pr@gn runs which vary from
365 and 751 Million intermediate level statements. The reka show that the average
size of the WETs is 9589 megabytes for the execution length ©6.90 millions IR
statements. As for individual components, timestamp nodebels, value node labels,
and edges labels consume 2467, 1731, and 5390 megabytesctgply. Note that
the above WETs do not correspond to complete program runs ketse the ones for
complete program runs were exceedingly large. As the resugthow, it is impossible to
keep WETSs in memory for the purpose of dynamic slicing espally for long program
runs.

Table 2.1 . WET sizes.

Benchmark Input Stmts Executed WET Node labels (MB) Edge labels

(Millions) (MB) ts | vals (MB)
099.go training 685.28 10369.32 | 2614.12 | 1849.09 5908.12
126.gcc reflinsn-emit.i 364.80 5237.89 | 1391.60 | 1945.03 2901.26
130.li ref 739.84 10399.06 | 2822.26 | 1894.48 5682.32
164.gzip training 650.46 9687.88 | 2481.32 | 1733.13 5473.42
181.mcf testing 715.16 10541.86 | 2728.12 | 1875.21 5938.54
197.parser training 615.49 8729.88 | 2347.92 | 1615.57 4766.38
255.vortex training/lendian 609.45 8747.64 | 2324.87 | 1641.31 4781.46
256.bzip2 training 751.26 11921.19 | 2865.81 | 2154.85 6900.52
300.twolf training 690.39 10666.19 | 2633.64 | 1873.52 6159.03

[Avg. I n/a 646.90 | 9588.99 | 2467.74 | 1731.13 | 5390.12 |

The Trimaran [4] compiler infrastructure was used in the abee experiment. The
statements here correspond to Trimaran's intermediate leV statements. The pro-
grams were executed on the simulator which avoided introdtien of intrusion as no

instrumentation was needed. The experiments were carrieditoon a Pentium IV 2.4

27

GHz machine with 2 Gigabyte RAM and 120 Gigabyte hard disk.

Although it is desirable to hold a WET in memory, as the abovex@eriment shows
a WET may be too large. One solution to the space problem is t@ge the trace on
disk and then traverse these traces to construct the dynamaice on demand. In this
approach instead of requiring enough memory to hold the futlynamic dependence
graph, only the memory to hold the subgraph representationfahe dynamic slice
is needed. In [86] this approach was exploredA demand driven analysison the
trace was employed to recover only the relevant dynamic depdences and thus avoid
constructing a full graph. When a slice computation beginshe trace is traversed
backwards to recover the dynamic dependences required ftwetslice computation.
Note that since the interesting de nitions will always appar earlier than the uses, a
single traversal of the trace is su cient to perform a singleslice computation.

In the above algorithm, the time required to traverse a long>ecution trace is a
signi cant part of the cost of slicing. This trace traversalcan be speeded up as follows:
the trace is divided into trace blockssuch that each trace block is of a xedsize At
the end of each trace block aummary of all downward exposed de nitionsf variable
names and memory addresses is generated and stored. During backward traversal
for slicing, when looking for a de nition of a variable or a mmory address, the
algorithm rst looks for its presence in the summary of downard exposed de nitions.
If a de nition is found, the trace block is further traversedto locate the de nition;
otherwise using thesize information the algorithm skips right away to the start of
the trace block. Results in [86, 87] show that on average oM@0% of the trace blocks
are skipped.

In order to study the performance of the above demand driverigorithm, 25 slices
were computed for each of program runs in the previous expment. These slices were
performed for the latest executions of 25 distinct valuesdoled using load statements
by the program. The results are presented in Table 2.2. In th&able, the sizes of

the dynamic dependence graphs (DDGSs) are presentdelll denotes the size of a full

28

Table 2.2 . The performance of thedemand drivenalgorithm.

Program Executed Statements DDG Size (MB) Average Slicing Time

(Millions) Full | Max (Minutes)
099.go 138 | 1,707 162 10.7
130.li 125 | 1,745 105 11.3
126.gcc 131 | 1,534 58 12.1
134.perl 220 | 1,954 54 25.2
181.mcf 118 | 1,535 114 12.3
197.parser 123 | 1,816 40 9.9
255.vortex 108 | 1,442 34 10.2
256.bzip2 67 | 1,296 81 9.2
300.twolf 141 | 1,568 296 13.9
Average 130 1622 105 12.7

DDG while Max denotes the maximum DDG constructed during the 25 computains
for each program. The average slicing time is also given. Fnahe table, the average
maximum DDG has the size of 130 megabytes while the full DDG wmstructed has
the size of 1622 megabytes. In other words, the demand drivatgorithm greatly
alleviates the space problem and makes it feasible to compudynamic slices for much
longer runs. However, since computing each slice requirgaviersing and processing
the entire trace, the slicing time is quite slow even after ebling faster traversal using
trace block summaries. On average it took 9.2 to 25.2 minutés compute a single
dynamic slice across the di erent benchmarks. In conclusip although the demand
driven algorithm is space e cient, it is ine cient in terms o f execution time.

The above discussion leads to the following challenges thatist be addressed.

Challenge One: A pro le representation that is both space and time e cient is
desired. First, such a representation should be capable oblting a large amount
of pro le data in a small amount of memory. Second, this repeentation should be

rapidly traversable so that dynamic slices can be computed a time e cient manner.

Overview of Solutions:

Dependence is the type of pro le information required to pdorm conventional

29

dynamic slicing. A set of optimizations that greatly improwe the space e ciency
of a dynamic dependence graph are introduced ichapter 3 The optimized

representation can be traversed in a time e cient manner.

New techniques to compress value pro les are developedcimapter 5 As shown
in chapter 6, these value pro les can be used in addition to gendence pro les

to increase the e ectiveness of dynamic slicing in fault lation.

A novel approach to combine checkpointing with tracing to fcther improve the

scalability of the fault location framework is presented ichapter 7 Checkpoint-

ing is usually performed in an interval of minutes due to its igh overhead while
logging in between checkpoints can be performed with accapte overhead. In
contrast, tracing techniques can only handle an executiorf a few seconds and
therefore they cannot be performed for a long execution imel such as a check-
point interval. An execution fast forwarding technique is poposed to reduce

the log such that tracing becomes feasible for the replayedezution.

2.4 Challenge Two: E ective Fault Location

The e ectiveness of dynamic slicing is dependent on the sipé the computed fault
candidate set, i.e., the size of the dynamic slice. A study wgerformed to evaluate
the e ectiveness of dynamic slicing. For the purpose of expmentation, a set of faulty
versions of commonly used programs were collected. This dyuused real programs
with real bugs that were reported by users of these programdg-or programs that
produced an incorrect output value, dynamic slicing was pfrmed starting at the
rst incorrect output value produced during the failed run. For the programs that
crashed, the value which when referenced caused the crashvesg as the basis for
computing the dynamic slice. The faulty versions of the pragms along with the

descriptions of the faults are given in Table 2.3. The soursef these faulty versions

30

are also given. As shown in the table, these programs are widased. In addition one
should note that the rst nine faults cause the programs to psduce wrong outputs
while the last seven faults contain memory bugs leading to &gmentation error.

Now lets see how dynamic slicing reduces the amount of codeethrogrammer
has to examine to locate faulty code. In Table 2.4,0C is the lines of code in each
program, Exec represents the lines of code that were actually executed duy the
failed run. Slice gives the sizes of the dynamic slices.

From the experimental data presented in Table 2.4, the folang observations can

be made:

Oversized SlicesAs shown by Table 2.4, although dynamic slices signi cantly
reduce the sizes of the fault candidate sets { the sizes of @&mic slices range
from 0.90% to 63.18% of the executed statements while only%% to 15.58% of
code was executed, the raw sizes can still be quite large. Sooomputed slices
contain over one thousand statements. Therefore, it wouldebquite tedious to

manually inspect these slices.

Applicability. Dynamic slicing was not applicable in all the faults studied For
the rst four bugs of the grep program, because the failed runs did not produce
any output, which was essentially the misbehavior, errones values could not

be identi ed on which dynamic slices could be computed.

Therefore, the following issues need to be addressed in artte deliver a highly

e ective fault location system.

Challenge Two: Additional types of dynamic slices must be identi ed so thatap-
plicability of dynamic slicing can be broadened to wider rage of situations. Moreover,
by using di erent kinds of dynamic slicing in conjunction snaller fault candidate set

must be produced.

Table 2.3 . Faults used in the study.

[Program | Bug Description | Source
| grep 2.5 | using -i -o together produces wrong output | http://savannah.gnu.org
grep 2.5.1 (a) using -F -w together produces wrong output http://savannah.gnu.org
(b) using -0 -n together produces wrong output http://comments.gmane.org/
gmane.comp.gnu.grep.bugs/
(c) "echo dofe | grep dofe” nds no match http://comments.gmane.org/
gmane.comp.gnu.grep.bugs/
ex 2.5.31 (a) some variable is not de ned with option -I, http://soureforge.net
which fails the compilation of xfree86
(b) string "]]" is not allowed in user's code http://soureforge.net
(c) the generated code contains extra #endif http://soureforge.net
make 3.80 (a) backslashes in dependency names are not removed | http://savannah.gnu.org
(b) fail to recognize the updated le status while http://savannah.gnu.org
there are multiple target in the pattern rule
gzip-1.2.4 1024 byte long lename over ows into global variable AccMon [91]

ncompress-4.2.4

1024 byte long lename corrupts stack return address

AccMon [91]

polymorph-0.4.0

2048 byte long lename corrupts stack return address

AccMon [91]

tar-1.13.25 wrong loop bounds lead to heap object over ow AccMon [91]
bc-1.06 misuse of bounds variable corrupts heap objects AccMon [91]
tidy-34132 memory corruption problem AccMon [91]
mutt-1.4.2.1i heap bu er bound miscalculation http://www.securiteam.com/

Table 2.4 . Sizes of backward dynamic slices.

[Program | LOC | Exec (LOC%) | Slice (Exec%) |
grep 2.5 8581 | 1157 (13.48%) B
grep 2.5.1 (a) 8587 509 (5.93%) B
grep 2.5.1 (b) 8587 | 1123 (13.08%) B
grep 2.5.1 (c) 8587 | 1338 (15.58%) -
ex 2.5.31 (a) 26754 | 1871 (6.99%) | 695 (37.15%)
ex 2.5.31 (b) 26754 | 2198 (8.22%) | 272 (12.37%)
ex 2.5.31 (c) 26754 | 2053 (7.67%) 50 (2.44%)
make 3.80 (a) 29978 | 2277 (7.60%) | 981 (43.08%)
make 3.80 (b) 29978 | 2740 (9.14%) | 1290 (47.08%)
gzip-1.2.4 8164 118 (1.45%) 34 (28.81%)
ncompress-4.2.4 1923 59 (3.07%) 18 (30.51%)
polymorph-0.4.0 716 45 (6.29%) 21 (46.67%)
tar-1.13.25 25854 445 (1.72%) | 105 (23.60%)
bc-1.06 8288 636 (7.67%) | 204 (32.07%)
tidy-34132 31132 | 1519 (4.88%) | 554 (36.47%)
mutt-1.4.2.1 71774 | 2551 (3.55%) | 1052 (41.24%)

31

32

Overview of Solutions:

Two new types of dynamic slicedprward and bidirectional slices, are introduced
in chapter 4 They greatly compensate for the limitations of thebackward
dynamic slices. A coarse grained reduction on the sizes ofilfacandidate sets

can be achieved by intersecting multiple types of slices.

A ne grained fault candidate set reduction technique usingvalue pro les is
presented inchapter 6 By looking at the correct output produced in a faulty
run and the values computed during the execution, it can be fierred that many
statement executions in a slice are free of errors such thdigty can be eliminated

from the fault candidate set.

33

Chapter 3
Efficiency of Dependence Profiles

A dynamic slicing algorithm would be cost e ective if the dymmic dependence graphs
could be compacted so that they are small enough to hold in meny and the design of
the compacted graphs is such that they can be rapidly traveed to compute dynamic
slices. An optimization algorithm is devised to eliminate edundancy from a DDG
to achieve both space and time e ciency. The algorithm is basd upon the following

key ideas.

Sharing a dependence edge across multiple dynamic instance s: In general,
it is not merely su cient to remember whether a pair of statenents was involved in a
dynamic (data or control) dependence. For computing dynarmislices it is also neces-
sary to remember the speci ¢ execution instances of the stnents that are involved.
Conditions are identi ed under which it is not necessary to @member the execution
instances of statements involved in a dependence. Thus, agle representative edge
can be shared across all dynamic instances of an exercisegesglence. In partic-
ular, in these situations there is a one to one correspondenbetweenall execution
instances of a pair of statements involved in a dependencechase the statements
involved arelocal to the same basic block. In presence afiasing, multiple de nitions
of a variable may reach a use even if the de nitions and use aal to a basic block.

In such situations partial sharing is possible.

Transformations for increasing sharing: It is possible to construct a trans-
formed dynamic dependence graph in a manner that conven®n-local dependence

edges across basic blocks intocal dependence edges and therefore increases the

34

amount of sharing. First, in some situationson-local def-usedependence edges can
be replaced bylocal use-useedges. Secondjon-local def-usalependence edges can be
converted into local def-usedependence edges by performingath specialization To
limit the increase in static code size due to path specialidan, this transformation is
applied selectively in apro le guided fashion. In particular, selected intraprocedural

Ball Larus paths are specialized [9].

Removing redundancy labels on non-local edges: There are situations in
which di erent dependence edges are guaranteed to have itieal timestamp pair
labels. Redundant copies of timestamp pairs can thus be disded.

The experimental evaluation shows that once sharing of edgés achieved, the
number of dynamic dependence edges is reduced to roughly 6%datal dynamic
edges. When the full graph sizes range from 0.8 to 1.95 Gig#dsyin size, the corre-
sponding compacted graphs range from 20 to 210 Megabytes ires Average slicing
times for the algorithm range from 1.74 to 36.25 seconds assathe benchmarks stud-
ied while average slicing times of a demand driven algorithmange from 4.69 to 25.21

minutes.

In the remainder of this chapter, a series of optimizationshat reduce the number
of labels that need to be stored in a DDG. Once these optimidahs are presented,
it will also become clear that after optimization, the travesal of edges can be carried

out in a much more time e cient manner.

3.1 Optimizations on Data Dependence (DD) edges

In this section, optimizations on DD edges are discussed. &lsubgraph constructed
by the DD edges is also referred to ae dynamic data dependence subgrafiyn-

DDG). Given an execution instance of a use <t >, during dynamic slicing, there is

35

a need to nd the corresponding execution instance of the mlant de nition d <ty >.
There are two steps to this process: (ndingl) in general many di erent de nitions
may reach the use but it is necessary to nd the relevant de nion for u<t, >; and
(nding tg) even if the relevant de nition d is known it is needed to nd the execution
instance ofd, i.e. d <ty >, that computes the value used byu < t, >. While in
general it is necessary to remember all dynamic instancesadif dependences, next it
is shown that all dynamic instances need not be rememberedpégitly. It is possible

to infer some of the dynamic data dependences and their tintagps.

3.1.1 (OPT-1) Infer

(OPT-1a) Infer Local Def-Use for Full Elimination. Consider a de nition d

and a useu that are local to the same basic blockd appears beforeu, and there is
no de nition between d and u that can ever preventd from reachingu. In this case
there is a one-to-one correspondence between executionanses ofd and u. Sinced

and u belong to the same basic block, the timestamps of correspamgl instances are
always the samgi.e. given a dynamic data dependencel(u) <tgq;t, > itis always

the case thatty = t,. Therefore, given the use instanca <t >, the corresponding
d is known statically and the corresponding execution instae is simplyd <ty >.

Thus there is no need to remember dynamic instances individily { it is enough to

introduce a static edge fromu to d.

As mentioned earlier, in the plain WET representation, the gnamic dependence
graph is collected by starting with a set of nodes (basic blks) and then introducing
all dependence edges dynamically. To take advantage of thieaae optimization an
edge is simply introduced frormu to d statically prior to program execution. No new
information will be collected or added at runtime for the usei as the edge fronu to d
does not need any timestamp labels. In other words all dynaminstances of def-use
edge fromu to d are statically replaced by a single shared representativelge.

The impact of this optimization is illustrated using the example in Figure 3.1.

36

As shown in Figure 3.1, basic block 1 contains a labeled loaf-use edge which is
replaced by a static edge that need not be labeled by this optization. Static edges

are depicted as dashed edges to distinguish them from dynan@dges.

= (10,10)
) (20,20)
=X I’ (30,30)

Figure 3.1 . E ect of applying OPT-1a.

(OPT-1b) Infer Local Def-Use for Partial Elimination. In the above opti-
mization it was important that certain subpath was free of denitions of the variable
involved (sayV) so that a dependence edge involving that is free of labels could be
used. In programs with pointers, the presence of a de nitionf a may aliasof v may
prevent us from applying the optimization even though at rutime this de nition may
rarely rede ne v. To enable the application of preceding optimization in preence of
de nitions of may aliases ofv we proceed as follows. A static unlabeled edge is intro-
duced from one de nition to its potential use. If at runtime another may alias turns
out to truly refer to v, additional dynamic edges labeled with timestamp pairs wil
be added. The e ect of this optimization is that the timestanp labels corresponding

to the statically introduced data dependence are eliminatewhile the labels for the

37

dynamically introduced data dependence edge are not, i.@bkls have beemartially
eliminated.

During traversal, rst the labels on dynamic edges are examéd to locate the
relevant dependence. If the relevant dependence is not faljrthen it must be the
case that the dependence involved corresponds to the statidge which can then be
traversed. It should also be clear that greater bene ts wiltesult from this optimiza-
tion if the edge being converted to an unlabeled edge is the redrequently exercised
dependence edge. Thus, ffro le data is available it can be used in applying this
optimization.

In the example shown in Figure 3.2 let us assume thatP is a may alias ofX
and Q is a may alias ofY. Further assume that the code fragment is executed twice
resulting in the introduction of the following labeled dynanic edges: between the uses
of X and de nitions of X and P; and between the uses of and the de nitions of
Y and Q. The following static unlabeled edges are introduced: froitme use ofX
to the de nition of X (as in OPT-1a); and later the use ofY to the earlier use ofY
(as in OPT-2b described later). The dynamic edges introdudeare: from the use of
X to the de nition of P; and from the later use ofY to the de nition of Q. Thus

some, but not all, labels have been removed.

(10,11)

= (21,21& (21,21& p =
=X =X
=Y ™ =Y

*0) = uu ! *) —

Q= edge, Q=

Figure 3.2 . E ect of applying OPT-1b.

38

3.1.2 (OPT-2) Transform

(OPT-2a) Transform Local Def-Use for Full Elimination. While the above
optimization was able to achieve partial elimination of lakls, next an optimization is
presented that can eliminate all of the labels present in siations with aliasing. Full
elimination of labels is achieved througtspecialization Given a use of variablev in
a node (basic block) that is reachable by two distinct de niions (sayd; and d,) that
may de ne v, two copies of the node are created. One copy is used to exilaky
represent dynamic dependences betwedn and the use ofv while the other copy is
used to represent only the dynamic dependences betwesnand use ofv. Since in
each copy of the node the use ofis always data dependent upon the same de nition

point of v, the timestamp labels on these edges do not need to be mainizdl.

Z= Z= Y =
V= Y= (10,12)
¢ (10,11) > (10,11) (20,21) (10,1 (20,21)
(20,21) (20,21)
X = f(Y) X =1(Y)
X =f(Y) X =1(Y)
*P =q(Z *P=g(Z
9@ (11,11)(9@ (21,21) » *P =9g(2) P =9(2)
=X =X '
=X =X

Figure 3.3 . E ect of applying OPT-2a.

Consider the example shown in Figure 3.3. One use Hf is reached by the
de nition of X in statement X = f (Y) while the second use oK is reached by the
de nition of X in statement P = g(Z). By making two copies of the basic block that
contains the two de nitions and the use, static edges can batroduced to represent
both of the above dependences and thus the labels correspiogdto these edges are
eliminated. Note that the dependence edges correspondirgthe uses ofY and Z in
the basic block must also be replicated and appropriately teled.

In the above example, two copies of the node were su cient tolimminate the

39

local labels. In general, if uses of multiple variables hawvaultiple de nitions due to
aliasing, greater number of copies will be required to be ated to eliminate all of
the local labels. If the list of labels is very long, node reightion may be justi ed.
However, if there are only few labels, partial elimination @y be preferable to full
elimination.

Since the above optimizations show that timestamp labels docal dependences
edges can be eliminated, optimizations that convert non-4al dependence edges into
local dependence edges are further developed. Once nomlladependence edges have
been converted to local dependence edges, their labels candiiminated using the

above optimizations.

(OPT-2b) Transform Non-Local Def-Use to Local Use-Use. Consider two
usesu; and u, such thatu; and u, arelocalto the same basic blocky; and u, always
refer to the same location during any execution of the basiddezk, and there is no
de nition between u; and u, that can cause the uses to see di erent values. Now let
us assume that a non-local de nitiond reaches the uses; and u,. In this case each
time u; and u, are executed, two non-local def-use edges$ /(u;) <tg4;t,, > and
(d! wup) <tgy;ty, > are introduced. Letu; appear beforeu,. The non-local def-use
edge @! uy) <tgy;t,,) can be replaced by a local use-use edge! u,. The latter
does not require a timestamp label becaugg, is always equal tot,,. By replacing
a non-local def-use edge by a local use-use edge, labels @ndtige are eliminated.
During slicing an extra edge (the use-use edge) will be traged. Moreover, use-use
edges are treated di erently. In particular, a statement vsited by traversing a use-use
edge is not included in the dynamic slice.

Using static analysis one can identify uses local to basicaoks which always
share the same reaching de nition. Once having identi ed thse uses, use-use edges
are statically introduced from later uses to the earliest &sin the basic blocks. After

having introduced these edges, there will not be any need tollect or introduce any

40

dynamic information corresponding to the later uses.

The impact of this optimization is illustrated by further optimizing the dyDDG
obtained by applying OPT-1a. As shown in Figure 3.4, basic btk 2 contains a two
uses ofX each having the same reaching de nition from block 1. The laded non-
local def-use edge from the second use to the de nition is taped by an unlabeled
static use-use edge by this optimization. A use-use edge epresented by a dashed

edge to indicate it is static and further indicate that it is ause-use edge.

1
X =
X= [‘1
:X L/ :X r
(10,11) 5
2 (30,31) B
=X =X % uu
_ |- edge
=X =X 9
3 3
X = X=
4 4
=X =X

Figure 3.4 . E ect of applying OPT-2b.

(OPT-2c) Transform Non-Local Def-Use to Local Def-Use. Given non-local
def-use edged ! u) < tg;t, > between basic blockdy and b,, by creating a
specialized node for thgpath (say p) that when executedalways establishethe def-
use edged! u) <tgq;t, > (i.e., d cannot be killed alongp prior to reaching u), this
non-local dynamic edge can be converted into a local dynangdge ¢! u) <t§;t° >

for path p. While for the original edge ! u) <tgy;t, > the values ofty and t,

41

are not equal, for the modied edged! u) <t3;td > the values oft$ and t° are
equal. At runtime if the dependence between and u is established along pathp,

then that dependence would be represented by an unlabeledgedocal to node for
path p. However, if the dependence is established along some patheo than p, it is

represented using a labeled non-local edge betwdgrand h,.

The consequence of earlier optimizations was that the ingi graph contains some
statically introduced data dependence edges. The consenoe of this optimization is
that instead of containing only basic block nodes, the graptontains additional nodes
corresponding to paths that have been specialized. Duringecution it must be de-
tected when specialized paths are executed (an algorithm ¢io so is presented later).
This is necessary for construction of the DDG due to the folldng reasons. The value
of global timestamps must be incremented after the executioof code corresponding
to a node in the graph. Thus, the timestamp will no longer be tremented each
time a basic block is executed because nodes representingciized paths contain
multiple basic blocks. At runtime the system must distingush between executions of
a block that correspond to its appearance in a specialized thafrom the rest of its
executions so that when a dynamic data dependence edge isaaluced in the graph
it is known which copy of the block to consider.

The impact of this optimization is illustrated by further optimizing the optimized
dyDDG from Figure 3.4. As shown in Figure 3.5, if a specialidenode is created
for path along basic blocks 1, 2 and 4, many of the previouslyydamic non-local
def-use edges are converted to dynamic local def-use edgéhkinvthis path. The
def-use edges established along this path can now be staticantroduced within the
statically created node representing this path. Thus, theimestamp labels for these
def-use edges are no longer required. Since block 2 can ordyeliecuted when path
1-2-4 is executed, it is not needed to maintain a separate notbr 2 once node for path
1-2-4 has been created. However, the same is not true for ld®d and 4. Therefore

nodes representing them are maintained to capture dynamicedendences that are

42

1 Nodes Executed Timestamps
X= > 1.2.4 10
=x 1-3-4 20-21-22
1.2.4 30
2
=X~y 1 124
=x | edge X= vl X= N
7 |
=X / — L’
3 A =X
3 ,/ \\ ,,,,,,,
X = ! N
_ ! 1 =X ~
(21,22)7] X= \) edge
\\ = X -
4 N
NS _x
=X =X

Figure 3.5 . E ect of applying OPT-2c.

exercised when path 1-2-4 is not followed.

After applying multiple optimizations to the dyDDG of Figure 3.1(a), all but one
of the labels in the dyDDG have been eliminated. In fact thisabel can also be
eliminated by creating another specialized node for path ntaining blocks 3 and 4.

Finally it should be noted that the above optimization only éiminates labels cor-
responding to dependence instances exercised along thehpfatr which a specialized
node is created. Thus, greater bene ts will be derived if thpath specialized is dre-
guently executed pathAs a result, selection of paths for specialization can be $ed

upon pro le data.

3.1.3 (OPT-3) Redundancy Across Non-Local Def-Use Edges

In all the optimizations considered so far, situations havbeen identi ed and created
in which the labels were guaranteed to have a pair of identicimestamps. Now an
optimization is presented which identi es pairs of dynamicedges between di erent

statements that are guaranteed to have identical labels inllaexecutions. Thus, the

43

statements can be clustered so that they can share the samegedand thus a single
copy of the list of labels. Given basic blockk; and h, such that de nitions d; and
d, in by have corresponding uses; and u, in b,. If it is guaranteed that along every
path from ky to ky, either both d; and d, will reach u; and u, or neither d; nor d, will
reachu; and u,, then the labels on the def-use edgels ! u; andd, ! u, will always
be identical. The example in Figure 3.6 shows that the uses ¥fand X always get
their de nitions from the same block and thus dependence edg forY and X can
share the labels. A shared edge between clusters of statemsefshown by dashed

boxes) is introduced by this optimization.

1.2

1.2

< X

(10,11)

Figure 3.6 . E ect of applying OPT-3.

3.2 Optimizations on Control Dependence Edges

Control dependences are introduced at the granularity of Is&c blocks. Next the
optimizations that enable introduction of static unlabele control dependence edges
are presented. The subgraph of a DDG which consists of onlyntml dependence

edges is also referred to the dynamic control dependence mrgddyCDG).

3.2.1 (OPT-4) Infer Fixed Distance Unique Control Ancestor

Often basic blocks (nodes) in a control ow graph have a unigucontrol ancestor.

Whenever a node is control dependent upon a unique conditarpredicate, the con-

44

trol dependence edge can be introduced statically. In addin, sometimes the di er-
ence in the timestamps corresponding to a dynamic control pdendence is a compile
time constant. Thus, the di erence value can be rememberechd labeling the edge
with a timestamp pair can be avoided each time the dependenisexercised. In par-
ticular, for a dynamic control dependence edge(d) <t.;ty > which satis es the
above conditions,t; + = ty because timestamp is incremented by whenever after
the execution of the predicate when control transfers to thdependent basic block.
When this optimization is applied to the example from Figure3.7, the values of

edges from node 2 to node 1 and node 4 to node 2 are determinedhé¢cthe value 1.

1 1
if P
2 2
ifQ R
(30,31) N
, (1112) , (1112
4 (21,22) 4 dzl//
5 5
Figure 3.7 . E ect of applying OPT-4.
3.2.2 (OPT-5) Transform
(OPT-5a) Transform Multiple Control Ancestors If a node has multiple con-

trol ancestors, the node creating specialized copies can teplicated for each of the
control ancestors. Static control dependence edges can niogvintroduced and their
values can be remembered. The dynamic timestamp labels are longer required.

Continuing with the example from Figure 3.7, the labeled edgs corresponding to the

45

two control ancestors of node 3 can be replaced by static edgggter replicating 3 as

shown in Figure 3.8.

1 1
if P o= ifP
| d=1
2 | 2
if Q \ Qe
(30,31) >
s (1112 \ 5 g=1)
| |
d:l // _ //
4 J 4 d=1
L 7 1
Lo F 777If7F7’774\
3| ;90
5 5 -
5

Figure 3.8 . E ect of applying OPT-5a.

Specialization also enables another optimization for cawti dependences which
is analogous to OPT-2b. Following specialization, a node peesenting a path may
contain multiple basic blocks that are control equivalent28]. Instead of using separate
non-local edges for two control equivalent blocks, the ndoeal edge for the second

block can be replaced by a local edge which points to the rstldck.

(OPT-5b) Transform Varying Distance Unique Control Ancest or. In opti-

mization OPT-4 it had been shown how to handle the case when ade had a unique
control ancestor which was at a constant distance from the de. It is possible that
there are multiple paths from the control ancestor to the canol dependent node caus-
ing the former to be at varying distances from the latter depmding upon the path

taken. In this case specialization can be applied to creat®mies of the dependent
node such that each copy created is at a constant distance fingdhe control ancestor.

In Figure 3.9, node 4 is at distance 3 from node 1 along path 1324 and at

46

d=1
2 2 2
ifQ if Q fQ I«
1] 4
. . d=0
I if P
3,/ 3 3 d=r MTT ™
AL) 2 |
| T La=0
" 3|
4 4 4 2
d=0" 4

Figure 3.9 . E ect of applying OPT-5b.

distance 2 from node 1 along path 1.2.4. By specializing path2.3.4 as shown in the
gure the control dependence edge from 4 to 1 can be convertito a pair of control

dependence edges that are each at constant distances of 2 &nd

1,2 12) ===
X = (X = (X = |
if P if P LifP
a2y 1 [[====- :

Figure 3.10 . E ect of applying OPT-6.

3.2.3 (OPT-6) Redundancy Across Non-Local Def-Use and Cont rol De-

pendence Edges

In OPT-3 it was shown how two non-local data dependence edgesn share common
labels. The same approach can be extended to allow a non-lbcantrol dependence
edge to share labels with a non-local data dependence edgdamgy as these edges
connect the same pair of blocks. An example illustrating tki optimization is shown
in Figure 3.10.

a7

3.2.4 Completeness of the Optimization Set

In an unoptimized DDG any dependence edge may have a long lidtlabels attached
to it. To compact the graph it is desirable to apply transfornations that can eliminate
this list of labels. Given this requirement, it is important that an optimization (or
a series of optimizations) is available that can eliminatery list of labels. A set
of optimizations can be considered to beompleteif for any given list of labels, a
sequence of optimizations can be found in the optimizatioresthat can be used to
eliminate the list of labels. The completenesgroperty of the optimization set is
important because it indicates that there are su cient optimizations and it is not
needed to continue developing additional ones. In fact givean optimization set that
is complete, it is possible to convert any DDG into one whichds no timestamp pair
labels.
[Theorem] (Completeness). The set of optimizations OPT-1 through OPT-6
is complete
[Proof] There are two types of edges in the DDG, data dependence andntol
dependence. Lets us consider each of the edge types and shuat & list of labels
associated with an edge can be eliminated using the optimtkans described.
(1)Data dependence labelgLocal Edge) If the labels are associated with an edge
that is local to a basic block the labels can be always removeécause either they can
beinferred and hence OPT-1a is applicable or they can bentirely convertedto labels
that can be inferred by carrying out specialization using OP-2a. (Non-local Edge) If
the labels are associated with an edge that is non-local,.i.& connects two di erent
basic blocks, then it can always beconverted into a local edgédy applying path
specialization using OPT-2c. Once it has been converted tdacal edge, its labels can
always be eliminated as described above. Thus, it is conckdithat labels associated
with all data dependence edges can be eliminated by using thigtimizations provided.

(2)Control dependence labelgFixed Distance from Unique Ancestor) If a node is

48

at a xed distance from its control ancestor, then the labelgan beinferred and hence
optimization OPT-4 is applicable. (Others) If the node has miltiple control ancestors
and/or it is at a varying distance from its control ancestorsthen path specialization
using optimizations OPT-5a and OPT-5b can always be applie convertthe labels
into ones that can be inferred. Thus, it is concluded that labls associated with all
control dependence edges can be eliminated using the optiations provided.

From (1) and (2) it is concluded that the optimization set iscomplete 2

It is worth noting that in the above proof no reference was maato optimizations
OPT-1b, OPT-2b, OPT-3, and OPT-6. These optimizations are at needed for com-
pleteness. They are provided as cheaper alternatives to sfaization in situation

where they may be found to be applicable.

3.3 DDG Construction and Dynamic Slicing

In this section, the construction of a DDG and how to perform gnamic slicing on
the DDG are discussed. First, lets discuss how a DDG is gen@. In light of the
previous discussions, this procedure consists of two steps the rst step a static
graph is constructed, which is transformed from a plain cordl ow graph as discussed
in the WET representation, and in the second step dynamic infmation is labeled

on the static edges.

Static Component of DDG. To construct the static component of DDG it is
needed to perform the following analyses: (feaching de nitions analysis is carried
out to compute def-useinformation. May alias information is needed to carry out
this analysis; (ii) reaching usesnalysis is carried out to computeise-usanformation;
(i) simultaneous reachabilityanalysis is carried out to identify situations in which

a pair of non-local data dependence edges cahare labelsand (iv) postdominator

49

analysisis carried out to computecontrol dependencef28]; and (v) must reachability
analysis is carried out to identify situations in which a pai of non-local data and
control dependence edges cahare labels

Except for simultaneous reachabilityanalysis all other analyses are standard.
Therefore next the details of the simultaneous reachabditanalysis will be described.
Given a pair of de nitions d; and d, in block s, with corresponding usess; and u,
in block d, the edgesd; ! u; andd, ! u, will share identical labels if and only if
whenevers and then d are executed either both data dependences are exercised or
neither of them are exercised. The subgraph consisting §fd, and all nodes along
paths from s to d is considered. The set of nodes in this subgraph excludisgis
referred to asreach(sd). KILL , is a two bit value where bits correspond to the
two de nitions; bit value of 1 indicates that n does not kill the de nition while 0O
indicates that n Kkills the de nition. The following equations compute for eah node
in reach(sd) a data ow value which is f 11;10;01 00g.

T
8n 2 sucqs) reach(sd); x, = fllg
8n 2 reach(sd) sucqs);

S
Xn = fKILL p™ XX 2 XpQ
p2pred(n)\ reach(sd)

If the solution for noded is f11g (i.e., both de nitions always reachd) or f11;00g
(either both de nitions reach d or neither reachedl), then the two dependence edges
will always have identical labels. On the other hand, if thedution contains 10 (01),
then there is a path froms to d along whichd,; (d,) reachesd but d, (d;) does not
reachd. This analysis does not need to be carried out for every paif de nitions but
rather for those that appear in the same basic block and havercesponding uses in
the same basic block. Moreover, transitivity can be used taufther reduce the pairs

considered (i.e, if ¢ ! up;d, ! up) can share labels andd, ! uy;ds ! u3z) can

50

share labels, then so cand{ ! uj;;d3! u3)).

Given the results of the above analyses, enough informatias available to con-
struct the static component of DDG. However, it is observedhat the static compo-
nent of DDG must be constructed once and then used repeatedty capture dynamic
dependence histories of dierent program runs. In other wds the optimizations
must be applied to construct the static component. While manof the optimizations
can be applied for every opportunity that exists, there is aubset of optimizations
that must be applied selectively. In particular, all of the pecialization based opti-
mizations should be applied only if it is expected that theiapplication will result in
more compaction than the graph expansion that is caused by exgalization. There-
fore these optimizations should be applied in a pro le guidefashion. All Ball Larus
paths [9] having a non-zero frequency during a pro ling run @re specialized. This
approach works well because nearly all of the optimizationgquiring specialization,
are actually based upon path specialization. There are twgbmizations that require
data dependence pro les { OPT-1b and OPT-2a. The implementeéon does not make
use of data dependence pro les yet. Instead OPT-1b was apgdi such that data de-
pendence edges created due to must aliases were given gyidar partial elimination
over edges due to may aliases. OPT-2a is not applied becauseesective static

heuristic is not available to do so.

Dynamic Component of DDG. As the program executes, it sends a trace of
one basic block at a time to an online algorithm which buildsite DDG. This online
algorithm must carry out two tasks. First it must bu er the basic block traces until

it is determined which node in the static DDG must be augmentewith additional
dynamic edges. This is necessary because there may be midtipopies of a basic
block due to specialization. Second it maintains the timeamp value and uses it to
create the labels corresponding to the dynamic edges.

Consider the example shown in Figure 3.11. Let us assume thatr the CFG

51

shown the static graph constructed has nodes for each of thadic blocks and another
node for path 1245 is created due to specialization. When tipeogram executes and
generates a trace for block 1, at this time dependence edges ot be introduced
for statements in 1 because it is not known where to introdudiese edges { in copy
of statements of 1 in node 1 or node 1245. The trace must be bued till it is clear
that either the program has followed path 1245 or that it hasdken some other path.
To detect when it is the right time to introduce edges the treecan be constructed
as shown in Figure. 3.11(c). The online algorithm is initidy at the root of the tree.
Depending upon the basic block executed, the appropriate gel labeled with that
block is traversed and the trace is bu ered. When a leaf is rehed, it is time to
process the bu ered trace. The leaf is labeled with the listfanodes in the DDG from
which the edges introduced will originate. For example if lsc blocks 1, 2, 4, and
5 are executed the edges originate from node 1245 while ifdis 1, 2, 4, and 6 are

executed the edges originate from nodes 1, 2, 4, and 6.

1
VAR
? > 1245
\ 1
4 2
RO
5 6 5
6 1245 1,2,4,6
(a) CFG (b) Nodes (c) Find and update tree.

Figure 3.11 . Introducing dynamic edges.

Dynamic Slicing. During the computation of a dynamic slice, the DDG is tra-
versed backwards to identify the statements that belong tohe slice. The set of
dependence edgeBs going backwards from a statemens can be partitioned into

subsets of edge&,. corresponding to each uses and subset of edge&., corre-

52

sponding to all control ancestors ok. In other words, Eg = > = S E.. Given
an execution instance ok, says < ts >, for each subset of e%ljées corresponding to
a dependence irE; (i.e., E,, or E.), it is needed to locate the specic edgs’ in

Es that must be followed. Moreover, since the edgs®’! s may have been exercised
many times, the speci ¢ dynamic instance of this edges{! s) <tg;ts > that is

involved in the dependence must be identi ed.

O OO OO
©

(@) (b) (€)

Figure 3.12 . Traversing dependence edges.

There are three situations that arise as shown in Figure 3.12et us say a subset of
edgesEys) from Eg are being considered due to a dependent@volving s (i.e., Eqs)
corresponds to somé&,,; or E.,). In the rst case, Eqs) contains a single static edge
s?!' s which is thus not labeled dynamically with timestamp pairs.The traversal is
straightforward as there is only one choice and the timestgmts in (s°! S) <t ;ts >
can be easily determinedtf = ts for data dependences antko = ts for control
dependences). In the second case there are multiple dynarai@ thus labeled edges
(say s sands® s). The labels on these edges®and 1°% must be searched to
locate the relevant edge and its instance &% s) <tguts> or (s s) <tgoogts >.
In the third case, there is a single unlabeled static edgg®! s as well as multiple
labeled dynamic edges (sag®®! s and s’ s). The labels ons®! sands® s
(i.e., 1%°and [°% are rst searched. If the relevant dependencesf® s) <t ts > or
(s* s) <teojts > is found, it is done; otherwise the static edge’! s is selected

and the value of timestamptg in (s°! S) <t;ts > is computed as discussed in the

53

rst case.

It is worth noting that removal of explicit timestamps, as iscarried out by the series
of optimizations developed, not only makes the dependenceagh more compact, it
also speeds up the traversal process as fewer timestamps segarched to locate the
relevant timestamp. The rst and third cases contain a statt unlabeled edge and
hence the search is reduced while the second case represiatsituation in which no
reduction in search is achieved as all dynamic labels are sdvand hence potentially
searched.

The key points of the traversal process have been describeldow the dynamic
slicing algorithm is summarized. In order to enable comput@n of slices, for each
variable v the triple is maintained < s; n;ts > such that v was last de ned by state-
ment s in node n at time ts. The dynamic slice forv is computed as shown below.
Notice the manipulation of timestamps for unlabeled edgesd also note that ifs°! s
is auu-edge thens®is not added to the slice. The sharing of labels between di ent
edges is not explicitly re ected in the algorithm below sine it is an implementation
detail which a ects how the timestamp labels on edges are assed. In the algorithm
below, sSlice(s < ts >) represents the set of statements that belong to the dynamic
slice of execution instances < ts > and eSlicg(E;ts) represents the subset of state-
ments in the dynamic slice of execution instance < ts > that are contributed by the
traversal of the subset of dynamic edgds from s <tg>.

BWS(V) = fsg sSIice(s <tg>)

S
% |fE Eus ECSS then

8us

eSIlce(EuS, s) eSliceEc,; ts)
% else
" endif

sSlice(s<tg>) =

54

sSlice(s’<t2>) sy
elseif 9 unlabeled edge® s 2 E then

case 5 is : S

du edge: sSlice(s®<ts>) fsY

uu edge: sSlice(s®<tg>) S

cd edge sSlice(s’<ts < s>) fsY
endif

8
% if 9 labeled edgés®! <) <tsits>2 E then
eSlice(E; ts) = %

Figure 3.13 . Using shortcuts.
Using Shortcuts to Speed Up Traversal. Finally, an optimization is presented
that is used to speed up the traversal of the DDG by the aboveising algorithm. As
shown, the optimized algorithm introduces some dependeneeges statically while
others are introduced dynamically. It is possible that at sme points in the DDG
multiple edges are traversed in sequence that are all stagdges. If this is the case,
the contributions to the dynamic slice when these edges areversed is also known
statically and always the same. Therefore, to speed up tragal of these edges, a
shortcut edge is introduced that replaces the traversal of multipletatic dependence
edges by the traversal of a single shortcut edge. The edgeabdled with the set of
statements that are skipped by the shortcut edge so that theythamic slice can be

appropriately updated when the shortcut edge is traversedin the example shown

55

in Figure 3.13, corresponding to the sequence of two statidgesS; ! S, ! S;, a

shortcut edgeS; ! S, labeled with f S,qg is introduced.

3.4 Experimental Results

The algorithm described has been implemented using tieimaran compiler infras-
tructure which handles programs written inC. The experiments were performed on
the same set of SPECInt benchmarks. The goal of the experinterwas to essentially
determine the space and time costs of the proposed dynamiisig algorithm which
is also referred to as OPT. It is also compared with the demandriven algorithm

discussed in chapter 2.

3.4.1 Performance Evaluation of OPT

Graph sizes. The size of each full dynamic dependence graph is measuredl an
it is compared with the size of the corresponding optimizedrgph obtained after
application of all the optimizations described in this pape These graph sizes are
shown in Table 3.1. As shown in the table, the graphs sizes amduced by factors
ranging from 7.46 to 93.40. As a result, while the full graphizes range in size from

0.8 to 1.95 Gigabytes, the optimized graphs range from 20 td @ Megabytes in size.

100% Effects of optimizations
0

90% -
80% = — 1 111 1M1 11 foopm
70% HOPT-2
60% 1 | 1 1 - B e B B e B | [moPT3
50% | i OOPT-4
wov | T || OOPT-5

’] - L{ | [mOPT-6
30% 1 = = H [EDYN
20% - | |
Ealin-N-0-N:0-0_N-0-R:0:
0% B e =L L

S & - Q N

T R I I PG

oF & L F Y P @
o q‘;f" \93« v b b v

Figure 3.14 . E ect of various optimizations on DDG size.

56

Table 3.1 . DDG size reduction.

Program Exec. (Millions) | Graph Size (Megabytes)| Reduction

Before | After Factor
300.twolf 140 1568.44 210.21 7.46
256.bzip2 67 1296.14 50.48 25.68
255.vortex 108 1442.66 64.81 22.26
197.parser 123 1816.95 69.81 26.03
181.mcf 118 1535.84 170.29 9.02
164.gzip 71 834.74 51.57 16.19
134.perl 220 1954.40 20.92 93.40
130.li 123 1745.72 96.50 18.09
126.gcc 131 1534.37 74.71 20.54
099.go 138 1707.36 131.24 13.01

The substantial reduction in the graph size is due to the facthat roughly only
6% of the dynamic dependences are explicitly maintained aft the proposed opti-
mizations are applied. The contributions of the various optnizations in reducing the
graph size are shown in Figure 3.14. Here 100% correspondthfull graph size and
dyn corresponds to the size of the graph after application of alhe optimizations.
The other points in the bar graph show how the size reduces dsetoptimizations are
applied one by one. As illustrated, OPT-1 is very e ective a# reduces graph sizes to
roughly 35% of the full graph size. However, the other optimations also contribute
signi cantly as they together reduce the graph size from 35% 6% of the full graph
size. It is important to point out that the distribution obta ined is dependent upon
the order in which the optimizations are applied since someases can be handled by
multiple optimizations.

It is observed that the majority of the savings comes from apying optimizations
for dynamic data dependence edges. This is because the dyi@aoontrol dependences
represent a small fraction of information contained in DDG gee the rst graph in
Figure 3.15). This is not surprising because control depeedce edges are introduced

at basic block granularity while data dependence edges hate be introduced at

Relative sizes of dyCDG and dyDDG

W% e m m | H OE g |
90% -
80% -
R e e e e e e e N S
60% -
50% - BEdyCDG
0% H H H H H H H = H B H |odypbe
30% -
20% -
10% -
0% ‘ ‘
6\0{\ § o(\e"“ & & S8 v§$,;50\'\ bg"o o Q,@&
SR S S v
Effects of dyDDG optimizations
100%
90% -
80% - HOPT-1a
70% - BOPT-1b
60% 4 OOPT-2b
0% OOPT-2¢
L BOPT-3
‘3‘822 ::7 O YL ® e
—-—!—L = B — —
20% 1 — ||
10%
0%
@0{\ ~o’i>Qq/ o&-\- rzgp ‘S(\é @Q QQ}\ '{,56.\'\ bgcf’ ng @0%
S 5 oF a8 & @ F AR
Vo C
Effects of dyCDG optimizations
100% - e
90% -
80% H — H H H H H H H H
70% | || BOPT-4
SO N O O O I O B O R R =y =F
covs | || | || |opT-sb
— || || BOPT-6
R i ™ e I e O e s s Y I N e A e e e R i T T N
30% - I
20% 1 1 - [u
10%
oo LLL i A s | =
@o{\ ‘0;\’\& 40‘@+ 'S‘QQ} v&é\ b‘&& vQQ}\ '3’0\\ © 3 S $ e@&
,500(159@‘&@.\9;\9@ AN NSRS

Figure 3.15 . dyDDG vs. dyCDG size reduction.

57

58

statement granularity. The second and third graphs in Figug 3.15 separately show the
reductions in the sizes of dyDDG and dyCDG due to the applicain of optimizations.
The contributions of the individual optimizations is further breakdowned. Note that

the second graph in Figure 3.15 does not include OPT-2a besaut was never applied.

Execution times. The next step is to analyze the slicing times of the proposed
algorithm. To carry out this study multiple program slices vere computed at various
points during the execution of each program. The reason whyuttiple slices were
computed is that depending upon the memory address or varibchosen, the slicing
times can vary. The reason why slicing was carried out at dirent points during
execution is that the change in slicing times was wanted as d@hsize of the DDG
grows. Moreover this scenario also represents a realistigeuof slicing { the user may
want to compute slices at di erent execution points.

The results of this study are presented in Figure 3.16. In teigraph each point
corresponds to average slicing time for 25 slices. For eadtnbhmark 25 new slices
were computed after execution interval of 15 million stateemts { these slices corre-
sponded to 25 distinct memory references. Following eacheewtion interval slices
were computed for memory addresses that had been de ned ®ne last execution
interval { this was done to avoid repeated computation of samslices during the ex-
periment. As shown in the gure, the increase in slicing timegis linear with respect to
number of statements executed. More importantly the slicm times are very promis-
ing. For 8 out of 10 benchmarks the average slicing time for Zhices computed at
the end of the run is below 18 seconds. The only exception380.twolf for which
average slicing time at the end of the program run is roughly63seconds. It is worth
noting that the optimizations did not reduce the graph sizedr this program as much
as many of the other benchmarks. Finally, at earlier points wting program runs the
slicing times are even lower.

The above experiment was also performed without making usé the shortcut

59

35 ——099.g0 —i—126.g9cc
—&—130.li —8—134.perl

~ 30 1 164.gzip =¥—181.mcf
§ 25 | —+=197.parser =255.vortex
° 256.bzip2 —#—300.twolf
£ 20
25 |
[}
2

0 15 30 45 60 75 90 105 120 135 150

Statements executed (millions)

Figure 3.16 . Dynamic slicing times of OPT.

edges in the DDG. The average slicing times at the end of theqgram run with and
without making use of shortcuts are given in Table 3.2. In 8 dwf 10 benchmarks,
by making use of shortcuts, the average slicing time is cut byore than half. Thus,
this is an important optimization.

Finally, let us consider the cost of generating the DDGs so &t dynamic slicing
can be performed. The implementation performs DDG constrtion in two steps.
First instrumented programs are run to collectexecution traces(control ow and
data address traces). In the Trimaran environment, the exetion of the program
slows down roughly by a factor of two when traces are generdteSecond execution
traces arepreprocessedo generate DDGs. The preprocessing times are shown in
Table 3.3.

3.4.2 Comparison with Other Algorithms

The performance of OPT is also compared with thedemand driven(DD) algorithm

and the traditional dynamic slicing algorithm based on unofimized DDGs (BAS).
The DD algorithm was found to be the best overall in [86] as it@es not run out of
memory for reasonably long program runs. The traditional B& algorithm runs out

of memory for long program runs. However, in order to be able tsuccessfully run

Table 3.2 . Benet of providing shortcuts.

Program OPT slicing Times (seconds) Ratio
w/o shortcuts | with shortcuts | w/o / with
300.twolf 68.01 36.25 1.88
256.bzip2 6.14 2.10 2.92
255.vortex 5.57 1.92 2.90
197.parser 4.86 2.21 2.20
181.mcf 22.05 17.10 1.29
164.9zip 4.54 1.74 2.61
134.perl 12.59 4.05 3.11
130.1i 15.65 6.09 2.57
126.gcc 9.76 3.80 2.57
099.go 26.85 11.36 2.36

Table 3.3 . Preprocessing time for OPT.

Program Preprocessing|| Program Preprocessing
Time (Minutes) Time (Minutes)
300.twolf 65.29 || 256.bzip2 38.36
255.vortex 44.46 || 197.parser 44.06
181.mcf 53.64 || 164.gzip 23.52
134.perl 51.12| 130.li 49.88
126.gcc 48.83 || 099.go 35.24

60

61

BAS, a machine with 2 Gigabyte RAM was used which was su ciento accommodate
the original DDGs for all but one program run (34.perl).

The cumulative slicing times for computing up to 25 slices athe end of the
program run for the two algorithms are plotted in Figure 3.17 As one can see,
the DD algorithm is much slower than the proposed algorithm.Computing each
new slice using DD on an average takes 4.69 to 25.21 minutepel®ding upon the
benchmark while computing the same slice using the optimidalgorithm OPT takes
1.74 to 36.35 seconds. The DD algorithm spends a great dealtiofe traversing the
execution trace stored on disk during each slice computatio The point at which
the curves intersect the y-axis represents the preprocasgitime { for the proposed
algorithm this is the time for building the DDG while for the DD algorithm this is
the time for preprocessing the execution trace to enable fas traversal of the trace
as described in [86]. The exact preprocessing times are give Table 3.4. As one
can see, while the preprocessing time of the proposed OPT @i¢hm is higher, the
di erence is comparable to the time spent on computing a fewlises using the DD
algorithm.

The memory needed by the OPT and DD algorithms is given in Tabl3.5. While
the memory used by the OPT algorithm is the size of reduced DDGhe memory
used by DD is the size of the DDG subgraph corresponding to acghg request. Since
the latter varies with slicing requests, the largest DDG sujraph size constructed
in response to 25 distinct slicing requests is presented. tdathat in 5 out of 10
benchmarks the size of the largest DDG subgraph built by DD igreater than the full
reduced DDG built by OPT. It is clear from this data that on average, the memory
needs of DD and OPT are comparable to each other.

Therefore, based upon the above results it can be concludddhat OPT is superior
to DD because it is much faster than DD and at the same time it @s roughly the

same amount of memory as DD.

Cumulative slicing Cumulative slicing Cumulative slicing

Cumulative slicing

icing

[
=
k]
=
£
3
[&]

£

£

time (min.)

time (min.)

A
£
[
£

W oW A
& & 8
8 & &

2 250

200
150

=
)
]

w
&
S

@
S
5]

N
o
S

N
5]
S}

-
@
S

,_.
5
5]

@
S

o

~
=]
IS]

@
=]
5]

@
S
]

IS
5]
S}

w
S
]

200

300.twolf
——OPT
—=— DD
—4—BAS
0 5 10 15 20 25 30
Slicing queries
255.vortex
——OPT
—=- DD
——BAS
0 5 10 15 20 25 30
Slicing queries
181.mcf
——OPT
—=— DD
—+—BAS
SN
./'/./:/r
0 5 10 15 20 25 30
Slicing queries
134.perl
——OPT
—=— DD
—4— BAS ** Qol
I/' T T T T T
0 5 10 15 20 25 30
Slicing queries
126.gcc
——OPT
—=— DD
—+—BAS
=
0 5 10 15 20 25 30

Slicing queries

Cumulative sl

time (min.)

time (min.)

250

=
@
3

=
5]
3

@
3

o

Slicing queries

Figure 3.17 . Comparison of OPT with DD and BAS.

256.bzip2
—+—OPT
—=-[D
—+BAS
SN
././‘/r./'/./././.
0 5 10 15 20 25 30
Slicing queries
197.parser
——OPT
0 5 10 15 20 25 30
Slicing queries
164.gzip
—+—OPT
—=-[D
—+BAS
S
T
0 5 10 15 20 25 30
Slicing queries
130.li
—+—OPT
—=-[D
—+BAS
SN
S
0 5 10 15 20 25 30
Slicing queries
099.go
—+—OPT
—=-[D
—+BAS
N e S
0 5 10 15 20 25 30

62

63

BAS versus OPT. As mentioned earlier, BAS runs out of memory for reasonably
long program runs. Fortunately, the slicing times of the OPTalgorithm can be
compared to that of the BAS algorithm in situations where theprogram run was
short enough to enable the entire (unoptimized) dynamic demdence graph to be
kept in memory. BAS was able to successfully run on a machindthv2 Gigabyte
RAM for all programs except134.perl

The slicing times of BAS and OPT are compared in Table 3.6. Isiobserved that
OPT is faster than BAS. This is because of the use of shortcutiges that speed up
the traversal of the DDG. The same optimization cannot be apied to BAS because
the unoptimized DDG only contains dynamic edges. The di emrece between OPT
slicing times and BAS slicing times are caused by shortcutebause when the slicing
times of OPT without shortcuts (given earlier in Table 3.2) § compared with slicing
time of BAS given below, they are quite close.

Finally the preprocessing times of OPT and BAS are comparedlt had been
expected that the preprocessing times for OPT would be highéhan BAS because
the OPT algorithm must spend some extra time for checking whiger the timestamp
pairs of all exercised dependences should be added to the DBhot. However, the
experiments show otherwise. As the data in Table 3.7 showset preprocessing times
for the BAS algorithm are consistently higher than those foOPT. The reason for
this behavior is that the list of timestamp pairs that are assciated with a dependence
edge often grow very large and thus resizing of the array in wah these are stored
must often be performed. These memory reallocation operatis take up signi cant
amount of time in BAS while in OPT this is not the case. Thus, tle overall e ect of
this behavior is that the preprocessing times of OPT are lowehan that of BAS.

Therefore, based upon the above results one can say that OP3 superior to
BAS not only because it scales to longer program runs, but aldecause it has lower

preprocessing and slicing times.

Table 3.4 . Preprocessing time: DD vs. OPT.

Program Preprocessing Time (Minutes) Ratio
OPT | DD DD/OPT
300.twolf 65.29 14.54 0.22
256.bzip2 38.36 9.38 0.25
255.vortex 44.46 16.35 0.37
197.parser 44.06 16.23 0.37
181.mcf 53.64 16.64 0.31
164.g9zip 23.52 14.56 0.62
134.perl 51.12 17.18 0.34
130.li 49.88 19.23 0.39
126.gcc 48.83 26.65 0.55
099.go 35.24 17.06 0.48
Table 3.5 . DDG graph sizes: DD vs. OPT.
Program Graph Size (Megabytes)
OPT [DD (Max. of 25 slices)
300.twolf 210.21 296.06
256.bzip2 50.48 80.66
255.vortex 64.81 33.60
197.parser 69.81 40.04
181.mcf 170.29 113.74
164.g9zip 51.57 34.75
134.perl 20.92 53.62
130.1i 96.50 105.45
126.gcc 74.71 57.70
099.go 131.24 162.28

Table 3.6 . Slicing times: BAS vs. OPT.

Program Slicing Times (seconds)

BAS | OPT
300.twolf 65.99 36.25
256.bzip2 5.92 2.10
255.vortex 6.17 1.92
197.parser 5.28 2.21
181.mcf 21.71 17.10
164.9zip 4.83 1.74
134.perl Out of Mem. 4.05
130.li 17.86 6.09
126.gcc 11.03 3.80
099.go 29.79 11.36

65

Table 3.7 . Preprocessing time: BAS vs. OPT.

Program Preprocessing Time (Minutes) Ratio

OPT | BAS BAS/OPT
300.twolf 65.29 99.62 1.53
256.bzip2 38.36 80.78 2.11
255.vortex 44.46 55.47 1.25
197.parser 44.06 67.57 1.53
181.mcf 53.64 71.17 1.33
164.gzip 23.52 31.66 1.35
134.perl 51.12 Out of Mem.
130.li 49.88 74.86 1.50
126.gcc 48.83 52.70 1.08
099.go 35.24 42.17 1.20

3.5 Summary

In conclusion, the OPT algorithm proposed in this chapter ppvides fast slicing times
(1.74 to 36.25 seconds) and compact dynamic dependence gregpresentation (20 to
210 Megabytes) leading to a space and time e cient algorithnfor dynamic slicing. In
contrast, the prior algorithms are either space ine cient corresponding graph sizes
for FP are 0.84 to 1.95 Gigabytes) or time ine cient (correspnding slicing times
for LP are 4.69 to 25.21 minutes) making them unattractive fouse in practice. The
development of a cost e ective dynamic slicing algorithm ian important contribution
as a wide range of applications that require analysis of dymac information are
making use of dynamic slicing. Next chapter discusses howedéent types dynamic
slices are computed based on dependence pro le to producenaall fault candidate

set.

66

Chapter 4
Effectiveness of Dynamic Slicing

To construct a fault candidate set, a slicing criterion neexito be identi ed, which
is a value in the dynamic dependence graph that is related tdv¢ execution of the
faulty code. Once the slicing criterion is known, the dynarmai dependence graph is
traversed to identify the set of statements that are relatedo this value through
chains of dynamic dependences. This set of statements iradis the faulty code as
well and is therefore a possible fault candidate set. So fdné slicing criterion that
has been introduced is the incorrect output, from which a b&ward dynamic slice is
computed to provide a fault candidate set. In this chapter,wo new types of slicing
criteria and the corresponding dynamic slices are introded. They are further used
in combination with the backward dynamic slice to produce saller fault candidate

sets.

The rst new type of dynamic slice is based upon aninimal failure inducing
input di erence. Given an input on which the program fails, theminimal failure
inducing input di erence is the part of the input that is found to cause the
failure. As a result the forward dynamic slice(FwS) starting from the failure
inducing input produces yet another fault candidate set thiacaptures the faulty

code.

The second new type of dynamic slice is based upoiritical predicates. Given an
input on which the program fails, acritical predicate is an execution instance
of a conditional branch predicate such that if the outcome othe predicate's
execution instance is reversed, the program terminates mhacing the correct

output. Since the predicate outcome is related to the faultit is found that

67

the bidirectional dynamic slice (BiS) which includes both the backward and
forward dynamic slices of the predicate execution instangaroduces another

fault candidate set.

The three types of dynamic slices (backward, forward, and directional slices)
are also calledsingle point dynamic slicedbecause the construction of the dynamic
slice begins starting from a value that is known to be relatetb the cause of program
failure (i.e., the faulty code executed in the failed run). Hally, now that there
exist three di erent fault candidate sets corresponding tahe backward, forward, and
bidirectional slices, an even smaller fault candidate sean be produced by intersecting
two or more fault candidate sets corresponding to the threei drent types of slices.
Such resulting slices are referred to asultiple points dynamic sliceYMPS) as they
are the result of computing dynamic slices starting from mtiple points (erroneous

value, failure inducing input, and critical predicate).

4.1 Forward Dynamic Slice of Minimal Failure-Inducing In-
put Di erence

Let us rst begin by brie y discussing the concept ofminimal failure inducing input
di erence, which is the slicing criterion for computing aforward slice Zeller intro-
duced the term of delta debugging [80] for the process of detening the causes for
program behaviors by looking at the di erences (the deltaspetween the old and
new con gurations of the programs. Hildebrandt and Zeller41, 83] then applied the
delta debugging approach to simplify and isolate the fail@ inducing input di erence.
The basic idea of delta debugging is as follows. Given two gm@am runsrg and r¢
corresponding to the inputsls and | ; respectively, such that the program fails in run
ri and completes execution successfully in rug, the delta debugging algorithm can
be used to systematically produce a pair of inputk? and 12 with minimal di erence

such that program fails forl? and executes successfully fd2. The di erence be-

68

tween these two inputs isolates the minimal failure inducm di erence part of the
input. These inputs are such that their values play a criticarole in distinguishing a

successful run from a failing run.

11103139

Tl

Figure 4.1 . Forward dynamic slice.

Since the minimal failure inducing input di erence leads tdhe execution of faulty
code and hence causes the program to fail, a fault candidatet £an be identi ed
by computing a forward dynamic slicestarting at this input. In other words all
statements that are in uenced by the input value directly orindirectly through a
chain of data and/or control dependences are included in thiault candidate set.
Thus, forward dynamic slicing was recognized as a means obgucing a new type of
dynamic slice which also represents a fault candidate set filve rst time [31].

The outline of the algorithm is given in Algorithm 1.

Algorithm 1 Fault location using minimal failure inducing input di erence.
1. Step 1: Compute minimal failure inducing input by:
2 either useddmin to Simplify input [83]:
12 = ddmin(l)
min — |f0
or usedd to Isolate input di erence [83]:
(919 = dd(ls, I)
: min — |§ - |f0
. Step 2: Compute forward dynamic slice:
FwS = FwdSlice(12; min)

©e N g R®

69

Step 1: Finding minimal failure inducing input. To nd a failure inducing
input, any of the two algorithms given by Zeller and Hildebradt in [83] can be used.
The rst algorithm (ddmin) simplies a failing test casel; to produce a minimal
test casel 2 such that removing any single input entity froml? causes the failure to
disappear. Therefore i, is|{ in this case. The second algorithm (dd)solatesa
minimal failure inducing input di erence between a failingand a passing test case.
Given inputs I+ and | 4 for a failed run and a successful run respectively, this algthm
returns a pair of inputs (1219, such that 12 and 12 correspond to a successful run
and a failed run respectively and any single part dff 12 if removed from1? would
make the failure disappear or if added td2 would make the failure occur. Therefore

in this case min =121,

Step 2: Compute Forward Dynamic Slice. The minimal failure inducing input
dierence i, computed by the rst step de nes the slicing criteria for the for-
ward dynamic slicing. In this step, the forward dynamic slie FwS = FwdSlice(l?;
min) IS computed. Given an input and the corresponding executio the forward

dynamic sliceis the set of statements which are a ected by that particularinput
via data/control dependences. The forward dynamic slicinglgorithm FwdSlice is
similar to the backward dynamic slicing algorithm presentg in chapter 3 except that
the dependence edges are traversed in the forward direction

There is an additional cost to using the above technique. Kt the user must
provide a parser for the input such that the input can be sepated into meaningful
entities and hence new inputs can be generated from them. 8ed the user must
examine the outputs for the additional program runs corresmding to the generated
inputs.

The above approach was applied to the bu er over ow error ingzip 1:0:7 as
described in Figure 4.2. Figure 4.2 illustrates the detailsf the problem. On the left

hand side of Figure 4.2, the relevant code segment is shownheTproblem happens

70

in the strcpy statement at line 844. Variableifname is a global array de ned at line
198. The size of the array is de ned as 1024. Before tlstrcpy statement at line
844, there is no check on the length of stringname. If the length of string iname

is longer than 1024, the bu er over ows and the program cragts. The memory

stcpy.c

36 strcpy(char * __restrict to, const char * __restrict from) Memory Layout

[40 for (; (*to = *from) I= 0; ++from, ++to);]

41 return(save); Heap
BSS segment
gzip.c: Failure-inducing input
152 # define MAX_PATH_LEN 1024 0x8093214
(char *) env
193 char *env;
198 CHAR ifname[MAX_PATH_LEN]; aaa [a] ooq]
Overflow ...aaaaa...
836 locat int get_istat(iname, sbuf) \l, :::::
844 strcpy (ifname, iname);
845 errno =0; 0x8092400 char ifname[1024]

...aaaaa...

1341 local void do_exit(exitcode)

Data segment

1344 if (env != NULL) free (env), env = NULL;

Figure 4.2 . Bu er over ow bug in gzip.

layout of the gzip program is shown on the right side of Figure 4.2. As shown,
there is a global pointerenv located in an address space above arrdyname. The
di erence betweenenv and ifname is 3604 bytes. If the length of stringiname is
larger than 3604, the value oenv will be changed due to bu er over ow. At line
1341 of functiondo_exit, before the program quits, it tries to free the memory point
to by env. If the value of env is an illegal memory address due to bu er over ow, it
causes a segmentation fault at line 1344. Two inputs were kéd: the rst input is

a le name %aaad, which is a successful input, and the second input is a le naen
% < repeated 3610 times ° which is a failure input because the length is larger
than 3604. After applying sddmin algorithm [83] on them, two new inputs resulted:
the new successful input was a le naméa < repeated 3604 times ° and the new
failed input was a le name% < repeated 3605 times °. The failure inducing input

di erence between them was the last character 'a’ in the newafled input.

71

Next, the forward slice was computed on the failure inducingput di erence in
the failed input. The size of the forward slice was 3 which ihades thefor statement
at line 40 in strcpy:c. This is of course the place where the bu er over ow occurred
The slicing implementations run on the binary code level anthus are able to check

the memory space of a program and even check the code in thedity.

4.2 Bidirectional Dynamic Slice of a Critical Predicate

Given an erroneous run of the program, the objective of this ethod is to explicitly
force the control ow of the program along an alternate path ta critical branch
predicate such that the program produces the correct outputThe basic idea of this
approach is inspired from the following observation. Givean input on which the
execution of a program fails, a common approach to debuggirggto run the program
on this input again, interrupt the execution at certain poirts, make changes to the
program state, and then inspect the impact of changes on camted execution. If
the changes to program state that cause the program to termate correctly can be
automatically discovered, it becomes much easier to und&sd the error. However,
automating the search of state changes is prohibitively egpsive and di cult to
realize because the search space of potential state changesxtremely large (e.qg.,
even possible changes for the value of a single variable anerenous if the type of the
variable is integer or oat). On the other hand, changing theoutcomes of predicate
instances greatly reduces the state search space since anbhapredicate has only
two possible outcomes, true or false. Therefore note thatribugh forcedswitching of
the outcomes of some predicate instances at runtime, it mayelpossible to cause the
program to produce correct results.

Having identi ed a critical predicate instance, a fault camlidate set is computed
as thebidirectional dynamic sliceof the critical predicate instance. This bidirectional

slice is essentially the union of the backward dynamic sli@nd the forward dynamic

72

SR S S S

Figure 4.3 . Bidirectional dynamic slice.

slice of the critical predicate instance. Intuitively, thereason why the slice must
include both the backward and forward slice is as follows. @sider the situation

in which the e ect of executing faulty code is to cause the pticate to evaluate

incorrectly. In this case the backward dynamic slice of theritical predicate instance

will capture the faulty code. On the other hand it is possiblgéhat by changing the

outcome of the critical predicate instance the execution daulty code is avoided and
hence the program terminates normally. In this case the foewd slice of the critical

predicate instance will capture the faulty code. Thereforghe faulty code will either

be in the backward slice or the forward slice. The role of bidictional dynamic slices
in fault location was rst recognized for the rst time in [84].

The notion of critical predicate is illustrated with the faulty version of the ex (a
fast lexical analyzer generator) program shown in Figure 4 which is taken from the
Siemens suite [43, 2]. The Siemens suite provides the assiec test suites and faulty
version for each program. The program in Figure 4.4 is deriddrom ex 2:4:7 and
augmented by the provider of the program with a bug that is ctled in the gure:
basdi + 1] should actually bebasdi]. The rst provided input which produced an
erroneous output was taken. It was observed that the outputsidi erent from the
expected output for the 538th character, a '1' is produced asutput due to the
execution ofprintf in the elsepart (line 2696) of the else if statement at line 2690
instead of a '0' that should be output by execution of therintf in the then part of the

else if statement. Under the correct execution at line 2678 set would have been

73

assigned the value obasd0] which is 1. The variablechk|[0] at line 2681 would have

!
"#$ %8 ()& + +&-
! WS 1 0,4&-(&*+, +&-

1

"#$ 10,+&()&* +,+&-
3 4565676 6

89: 6 9 8
3 4565676"#% 6

1

Figure 4.4 . Incorrect output bug in ex .

been assignedACTION _POSITION causing the predicate at line 2690 to evaluate
to true for loop iteration corresponding toi = 0. Due to the error at line 2673,
an incorrect value ofo set (= 3) causesch[0] to have an incorrect stale value (=1)
which causes the predicate at line 2690 to incorrectly evalte to its false outcome.
The proposed method looked for a predicate instance whoseitshing corrected the
output. The appropriate instance of theelse if predicate instance was found through
this search. Once this predicate instance was found, it caube easily determined
by following backwards the data dependences that the incautt value ofch[0] was a
stale value and it did not come from most recent execution obff loop at line 2667.
Thus, now it was clear that the error was in the statement at hie 2673 which set the
o set value.

In the above example, enforcing the outcome of a predicate caded the need
to search for potential modi cations of values forchk|], o set, or basd] which are
integer variables and thus can take many di erent values. The abovexample also

illustrates that it is important to alter the outcome of selected predicate instances

74

as opposed to all execution instances of a given predicatehid is because the fault
need not be in the predicate but elsewhere and thus all evaliens of the predicate
need not be incorrect.

The e ectiveness of this approach can be explained as follswGiven a program
run, from the perspective of a program output, the computatin performed to com-
pute an output can be divided into two parts: theData Part (DP) and the Select
Part (SP). The Data Part, DP, consists of executed instructions which compute data
values that are involved in computing the actual value thats output. These instruc-
tions can be identi ed by computing the backward data slicei.e. transitive closure
of dynamic data dependences starting from the output valuelThe Select Part SP, is
the part of the computation that caused the selection of instictions in the dynamic
data slice for execution. The presence of faulty code BP may cause an incorrect
dynamic data slice to be selected for execution and thus themgration of a wrong
output value. In contrast to DP, the size of SP is much bigger. The study in [84]
shows that the number of executed instructions IbP is 3 to 7 times smaller than
the number of executed instructions inSP and the number of executed predicates
is only a very small percentage of the total executed instrtions in SP. This study
suggests two points. First, if an error gets exercised, it imore likely the error occurs
in the SP part of the execution. Second, since computation I8P eventually takes ef-
fect through predicates, switching the faulty predicate aaally xes the entire faulty
computation in SP that contributes to the branch outcome of the faulty predicte.
That is to say, switching predicates is a natural solution tdocate predicate related

faults.

4.2.1 Finding the Critical Predicate

In this section a detailed algorithm is developed for predate switching. The general

idea of the approach is to perform repeated executions of tippogram on the failing

75

input and switch conditional branch outcomes during theseerexecutions till a pred-
icate switching is found that causes the program to producéné correct output. In
doing so, it is the goal to develop a search strategy that is Hopractical and e ective.

To achieve this goal a search strategy is designed which ingorates the following
features that together limit the search space and order thesarch.

Even though predicate switching greatly reduces the seardpace by limiting
state changes to conditional branch outcomes, there arelst substantial number of
instances of executed conditional branches whose outcoraes candidates for switch-
ing. Therefore, the search is limited so that during each neprogram execution, the
outcome of only asingle predicate instances switched. In other words, the program
behavior of simultaneously switching outcomes of multiplpredicate instances is not

explored because the number of such possibilities is veryda.

Last Executed First Switched (LEFS) Ordering.It has been decided that the
outcome of one branch predicate instance should be switchiedeach re-execution.
Next, the order in which possible predicate switchings arexglored is discussed.
One simple ordering strategy that is employed is based upohé following ob-
servation [61]: execution of faulty code (i.e., root cause of a failed run) isften
not far away from the point at which the program fails (e.g.,rpgram crashes
or it produces a wrong output value).Therefore possible predicate switchings
are explored in the reverse order of the predicate execut®n.e. the outcome

of the conditional branch instance encountered last is swhed rst.

Prioritization-based (PRIOR) Ordering. In addition to the simple LEFS or-
dering strategy, another more aggressive prioritizationdsed ordering strategy
(PRIOR) is further developed. This strategy consists of two main eps. In the
rst step an algorithm is used to partition the set of all brarch predicate in-
stances into two subsets: those that are expected to be in need by the faulty

code via dependences and those that are not expected to beuanced by faulty

Table 4.1 . Search strategiesLEFS vs. PRIOR.

Program Total After Dep .| Total LEFS | PRIOR
Instr. Fault dist. Preds

ex25.319(@) | 17,637 | 2583 | 23 | 3669 | 432 | 6
ex 2.5.319(b) 366,624 search 60,481 failed
ex 2.5.319(c) 303,121 search 46,820 failed

\ grep 2.5 H 21,001 \ 416 \ 27 H 2,555 \ 61 \ 56
grep 2.5.1 (a) 4,290 232 | 26 | 844 38 | 21
grep 2.5.1 (b) 10,337 search 1,652 failed
grep 2.5.1 (c) 41,068 185 \ 15 \ 9,561 32 \ 28
make 3.80 (a) || 1,907,361| 163,050 23 166,837| 155,492 102
make 3.80 (b) || 1,787,616| 404,400 50 218,778| 50,909 | 7,108
bc-1.06 68,336 15,676 6 9,684 2,079 2
tar-1.13.25 2,471 1,783 12 470 388 3
tidy 771,154 108 3 131,336 39 1
s- ex-v4 321,888 | 11,728 \ 5 \ 59,352 | 4,228 \ 37
s- ex-vh 171,953 search failed 30,203 error in DP
S- ex-v6 8,252 search failed 1,717 error in DP
S- ex-v7 187,903 | 139,799| 21 33,136 | 26,028 6
S- ex-v8 9,848 1,522 NA 1,943 218 NA
S- ex-v9 69,258 | 59,209 33 13,010 | 11,085 190
s- ex-v10 177,821 41 16 29,240 4 4
s- ex-vll 185,724 | 27,809 11 33,199 | 7,189 13

76

code. The ones in the rst subset are explored before the onesthe second
subset. In the second step the branch predicate instancesasrdered within
the rst subset according to their dynamic dependence distece from the erro-
neous output value. More precisely, the predicate instangdhat are separated
by fewer dependence edges from the erroneous output value explored before
those that are separated by greater number of dependence eslgThe resulting

ordering of branch predicate instances is then used in ouraseh.

Next, data is presented con rming the observations on whiclthe above design
choices are made. This data is based upon the set of real bugssented in Table 2.3
in chapter 2 and a set of injected bugs taken from the faulty vsions of ex provided

in the Siemens suite [43], denoted &s ex. Now let us consider the data in Table 4.1.

77

The total number of instructions executed, excluding the istructions from library
code, before program terminated during a failing run is give rst in column (Total
Instns). In 15 out of 20 faults that were studied a predicate instare was found,
switching which caused the failure to be removed. In three sas (faults (b) and (c)
in ex 2.5.319; fault (b) in grep 2.5.) the searching technique could not identify the
critical predicate because the error is too complex for anygdicate switch to produce
correct output value. In versions 5 and 6 of- ex, the search failed because the errors
were in the data part of the computation. The number of instrations executed by
the program following the execution of the critical predicee and before the program's
termination are given in columnAfter Fault. This number is considerably smaller than
the number in Total Instrns. This di erence motivates the LEFS strategy. The next
column, Dep. Dist,, is the shortest dependence distance between the output atite
critical predicate in the dynamic dependence graph. As oneam see, this distance
is quite small and thus this provides the motivation for ourPRIOR strategy. The
remaining data in the table demonstrates the e ectivenesd the two search strategies.
The column labeledTotal Predsis the total number of conditional branches that were
executed during the program runs while the last two column$,EFS and PRIOR, give
the number of predicate instances that were actually expled by switching before
nding a predicate instance whose switching produced the oect output (i.e., a
critical predicate). As we can see, these numbers are corsibly smaller than the
numbers inTotal Preds. In addition, the PRIOR number is far smaller than theLEFS
number in most of the cases. In the case sf ex-v8, although a critical predicate was
found using the LEFS strategy, one could not be found using th&RIOR strategy.
This is because the dynamic slices could not be computed onigrhthe ordering
of predicate instances is based. Overall, the above data indtes that the more
aggressivePRIOR strategy for ordering predicate instances is very e ective

Given the choices in search strategies described above, tredicate switching

algorithm is presented. The overview of the algorithm is gan in Figure 4.5. The

78

algorithm has three major steps: nding the rst erroneous wlue in a failing run;
identifying the predicate instances which will be consided using predicate switching;
and nally searching for a critical predicate reversal of whse outcome causes the

program run to succeed. Let us consider the above steps in aper detail:

Step 1: Locate the rst erroneous output valuéd program run is considered to
be a failing run if it produces incorrect output. Given the carect output, the rst
deviation between the output produced by the failing run andhe correct output and
also identify the execution instancd ¢ of instruction | that produced the erroneous
output value. The goal of the algorithm is to nd a predicate nstance switch that

causes correct output value to be produced.

Step 1: Find Erroneous Value

Examine failed run to identify the rst erroneous value
{ erroneous output or value that crashes the program.

Step 2: Find Predicates for Switching

(a) Run the program again, generatePredicate Trace (P T) identifying all instances
of branch predicates executed and their execution order.

(b) Perform Predicate Ordering of predicates
in PT using LEFS or PRIOR.

Step 3: Find Critical Predicate

for each pred. instanceP in ordered PT do
Generate instrumented program to switchP's outcome;
Execute above program;
if program run succeeds, reportP and terminate search.
endfor

Figure 4.5 . Algorithm overview.

As mentioned earlier, if the program crashes at some exearti instancel, of
instruction |, the value or address referenced By that caused the program to crash
takes the place of the erroneous output value. The goal of thegorithm in this
situation is to nd a predicate instance switch such that, fdlowing the switch, when

execution instancel ¢ is encountered, the program does not crash.

Step 2: ldentify predicate instances for switching this step the program is re-

79

run and the Predicate Trace (P T) is collected. The predicate trace is a record of all
instances of conditional branches executed during the faiy program run from the
start of the execution to the point at which the failing run produced the erroneous
value identi ed in the preceding step (i.e., wher ¢ was executed). The program exe-
cution performed in this step not only generates the predita trace, but in addition

it also provides information using which predicate instare ordering is performed. If
LEFS is used, the ordering is already clear from the predicate tta. If PRIOR is
used the ordering is performed as follows. Thdynamic dependence grapk generated
containing both dynamic data and control dependences dugrthis run. Partitioning
of predicates into high and low priority subsets is perfornteusing dynamic slicing.
The predicate instances that belong to the computed dynamilice form the subset
that contains predicate instances that were involved in pmrucing the erroneous out-
put. The remaining predicate instances form the lower pridaty subset. The predicate
instances in the higher priority subset are further arranggin the order of increasing
dependence distance from the erroneous output. The distaasneeded to perform

this ordering are obtained from the dynamic dependence ghap

Step 3: Searching for a critical predicategure 4.6 pictorially shows the search for
a critical predicate when the simpleLEFS strategy is used. The rst line represents
the failed run up to the point it produced the rst erroneous \alue. The small ovals
mark execution of predicate instances which are also lab&leThen the subsequent
steps show how the predicate instances are switched one airad in each subsequent
run in the LEFS order. The predicate instance that is switched is marked ugy a
larger oval. During each run the new output value is observed’he above process is
repeated till correct output value is generated. The basiaihctioning of this step is
the same whenPRIOR strategy is used, only the order in which predicate instanse

are switched changes.

80

Buggy run:

F’m3 Fn-1
R —_—————- -—0—0o—0-C
1 Pm~.| (o}
Ry, ——=----- o9 -
Poi 1O

Ry ——=----- -9 -"__

Pm-2 s
Rp — -9 - ____

R T TT==- 4 070

N “correct

Figure 4.6 . Search method.
4.2.2 Results of Searching for Critical Predicates

This section presents the evaluation of the critical predate searching algorithm. Ta-
ble 4.2 shows how often the algorithm is successful in nding critical predicate. As
column Found shows, in 15 out of 20 cases a predicate instance switch wasniib
which caused the program to produce correct output or elimated the cause of the
program crash. The critical predicate identi ed is indicagd in columnsWhere and
Which. Here columnWhere gives the le name and source line number at which the
switched predicate can be found antivVhich is the dynamic instance of the predicate
that was switched. The predicate instance number is measudrdrom the point at
which erroneous output is produced or program crashed. A ved of O corresponds to
the most recent execution instance of the predicate while gater values correspond
to earlier instances of the predicate. As one can see, in macgses the most recent
instance of a predicate is the critical instance while in soencases it is not the most
recent instance. Finally, columnFalse +vesrepresents the number of dynamic pred-
icate switches, which produced correct output but were notetated to the fault, that
were found byPRIOR (except in case o8- ex-v8 which used_EFS) before the desired
predicate switch was located. As shown by the results, in allhses except one, this
number is O indicating that the rst predicate switch located by PRIOR was related
to the fault. In one case rst predicate switch found was not seful but the second
one found was meaningful.

It has already been shown earlier thaPRIOR locates the desired predicate in-

stance switch far sooner tharLEFS. Now the time taken by PRIOR to locate the

Table 4.2 . Successful/Failed searches.

| Program | Found | Where | Which | False +ves

ex 2.5.319(a) | yes genc @ 1813 0 | 0
ex 2.5.319(b) no search failed

ex 2.5.319(c) no search failed

grep 2.5 yes grep.c @ 532 0 0
grep 2.5.1 (a) yes search.c @ 549 0 0
grep 2.5.1 (b) no search failed

grep 2.5.1 (c) yes dfa.c @ 2854 2 0
make 3.80 (a) yes read.c @ 6162| 143 1
make 3.80 (b) | yes | remake.c @ 652 1 0
bc-1.06 yes | storage.c @ 17§ 9 0
tar-1.13.25 yes | prepargs.c @81 O 0
tidy yes | parser.c @ 349 O 0
S- ex-v4 yes ex.c @ 2978 0 0
S- ex-vh no search failed { error in DP
S- ex-v6 no search failed { error in DP
S- ex-v7 yes ex.c @ 9171 0 0
S- ex-v8 yes ex.c @ 11833 0 0
S- ex-v9 yes ex.c @ 5046 0 0
s- ex-v10 yes ex.c @ 2687 1 0
s- ex-vll yes ex.c @ 3559 0 0

81

82

desired predicate instance switch is presented. The resulire given in Table 4.3. As
one can see, the time taken to locate critical predicates islite reasonable. In many
cases it is around 1 minute. The cases in which the search ¢al the time is large

(few hours) as it went through all the predicate instances.

Table 4.3 . Search time.

| Program \ PRIOR \
ex 2.5.319(a) 2.51 sec
ex 2.5.319(b) search failed (364 min)
ex 2.5.319(c) search failed (274 min)
grep 2.5 8.83 sec
grep 2.5.1 (a) 2.59 sec
grep 2.5.1 (b) | search failed (4 min 28 sec)
grep 2.5.1 (c) 4.46 sec
make 3.80 (a) 26.92 sec
make 3.80 (b) 30 min 37 sec
bc-1.06 0.49 sec
tar-1.13.25 2.83 sec
tidy 0.90 sec
S- ex-v4 8.76 sec
S- ex-v5 search failed (96 min 20 sec
S- ex-v6 search failed (3 min 56 sec)
S- ex-v7 3.34 sec
S- ex-v8 34.35 sec
S- ex-v9 34.51 sec
s- ex-v10 2.76 sec
s-ex-vll 2.56 sec

The results of using critical predicates to produce fault calidate sets will be

introduced in later sections in this chapter.

4.3 Multiple Points Dynamic Slices: Dynamic Chops

Three di erent ways of computing fault candidate sets have é&en described in the

preceding section. The faulty code is captured by all the pduced fault candidate

83

set. Therefore it follows that if more than one kind of dynana slice is available, the
size of the fault candidate set can be further reduced by intgecting the single point
dynamic slices. First Figure 4.7 shows that intersecting th forward and backward

dynamic slices produces aynamic chop The dynamic chop captures the faulty

108842300

g 5084334

R/ || A
X X

Figure 4.7 . Multiple points dynamic slices: dynamic chop (left); and irectional
dynamic chop (right).

code and is smaller than both the forward and backward dynamislices. Next, if a
bidirectional dynamic slice is available, it can be intersged with the dynamic chop to
further reduce the size of the fault candidate set. As shown the gure the result of
this operation is a pair of dynamic chops, which is refer to asbidirectional dynamic
chop one between the failure inducing input di erence and a crital predicate and
the other between a critical predicate and the erroneous quit value.

Let us demonstrate multiple points dynamic slices using anxample. The code
segments in Figure 4.8 are taken from the faulty versiomd of program ex from the
Siemens suite's website [2]. The assignment at statement833s wrong. All the three
types of slicing criteria are identi ed: theminimal failure inducing input di erence is
the program arguments of-F ' and -C'; the critical predicate is at statement 2978;
and the erroneous outputis observed at statement 3022. The backward dynamic slice,
forward dynamic slice, and bidirectional dynamic slice onhie corresponding slicing

criteria are computed as follows:

84

L
$ % T @9&% (%$
$N%'% % " 79*$ 9 79+$ A
S * $%% +* $
-)&+ $ I %? *
011) 22)31)45)67 .11)+ 0"
, 8 9% ;35
022)31)45)67 .11) + 0
., 8%
, 00
, 80
:# &+) $ |/
- 011) 22)3145)67. 11)+ 0"
, 022)31)45)67 . 11)+0
. $%% '%
' - 9 % 55+3
% $%% +*
- <
9 9)+$ 0 11) =0>)&+ |
9% 9)+$ 0 11) = 0>)&+)

Figure 4.8 . An example for multiple points dynamic slices {ex v4

85

BwS = 428 430 431,453 460 462 512 514 2978 2979 2983 2989 3016 3023

FwS = 431,453 460 461, 462 512 514 2978 2979 2983 2986 2987 2988 2989
30163022 3026

BiS = f428 430 431,453 460 2978 2979 2981, 3022):

They have the sizes of 14, 17, and 9, respectively. The dynanchop and bidirec-

tional dynamic chop are computed by taking intersections:

BwS\ FwS = {431,453 460 462 512 514 2978 29792983 2989 3016 30223y
BwS\ FwS\ BIiS = 431,453 460 2978 2979 2981 3022):

They contain 12 and 7 statements respectively. Statement28 and 430 are re-
moved from BwS by intersecting with FwS. In other words, theyare not fault can-
didates because they are not a ected by the failure inducinmput. Intersecting BiS
with the previous computed dynamic chop further removes 5atements from the fault
candidate set. This example clearly illustrates that mulple points dynamic slicing is
very e ective in reducing the size of the fault candidate setThe experimental results

presented later also reveal the same fact.

4.4 Implementation

The Trimaran compiler infrastructure [4] used in earlier chpters was designed for the
research of explicit instruction level parallelism. Its usbility as a basis of dynamic
analyses research is hence limited. For example, it does m@nerate native executa-
bles. Instead, it generates intermediate code that is onlyxecutable in a simulator
provided by Trimaran. In order to apply dynamic slicing to a arger set of realistic
programs, the implementation in this chapter is based on th&algrind [1] system,

which takes Intel x86 binaries generated from gcc compiler.

System usage. During the execution, dynamic dependences are identi ed drthe
dynamic dependence graph is constructed. After the execoii reaches its end, ei-

ther because the program terminates or because the programashes, the user is

86

presented with a simple debugging interface which providdgnited capabilities in-
cluding the ability to request computation of a dynamic slie for an execution instance
of an instruction that writes to a register, writes to a memaoy location, or represents
execution of a predicate. The slicing criteria used for a beward dynamic slice is
identi ed by the user and input into the system. The slicing citeria for forward dy-
namic slicing is computed separately and then input into theystem by the user. The
slicing criteria for computing a critical predicate is autonatically determined by the
tool. Once the slicing criteria are known to the system, thethrough the traversals
of the dynamic dependence graphs already available to thestgm, the computation
of dynamic slices and their intersections is performed. Evehough the system works
on binary level, the slices are mapped back to source codedleusing the debugging
information generated bygcc For the library code, if debug information is not avail-
able, the slice is reported in terms of binary instructionsHowever, if the source code
of the library is available, it can be recompiled with the debg option and then we

can also report the portion of the slice from the library codat source code level.

Implementation details. The main components of the system carry out the fol-
lowing functions. The static analysiscomponent of the system computes static con-
trol dependence information required during slice computians from the binary. The
static analysis was implemented using th®iablo [3] retargetable link-time binary
rewriting framework as this framework already has the capadlty of constructing the
control ow graph from x86 binary. The dynamic pro ling component of the system
which is based upon theValgrind [1] that accepts the sameycc generated binary,
dynamically instruments it by calling the slicing instrumenter, and executes the in-
strumented code with the support of theslicing runtime. The slicing instrumenter
and slicing runtime were developed to enable collection ofmamic information and
computation of dynamic slices. Valgrind's kernel is a dynaim instrumenter which

takes the binary and before executing any new (never instriented) basic blocks

87

it calls the instrumentation function, which is provided bythe slicing instrumenter.
The instrumentation function instruments the provided bag block and returns the
new basic block to the Valgrind kernel. The kernel execute$fi¢ instrumented basic
block instead of the original one. The instrumented basic btk is copied to a new
code space and thus it can be reused without calling the instmenter again. The
slicing runtime essentially consists of a set of call back functions for caim events
(e.g., entering functions, accessing memory, binary opéns, predicates etc.). The
static control dependence information computed by the stat analysis component is

represented based on the virtual addresses which can be urstieod by Valgrind.

4.5 Experimental Evaluation

Experiments were conducted to study several issues. The trsssue was about the
applicability of the three slicing techniques: Backward Slice(BwS); Forward Slice
(FwS); and Bidirectional Slice (BiS). Next the dynamic slice sizes were compared to
see which technique is more e ective in narrowing the size tife fault candidate set.
Finally an experiment was conducted to study the synergy amg these techniques,
i.e. benet of using multiple points dynamic slicingwhich narrows the fault candidate
set by intersecting the resulting BwS, FwS, and BiS dynamidises. In the remainder
of this section the detailed results will be presented and alyzed about the above

experiments.

45.1 Applicability

The applicability of the three types of dynamic slices was st studied. The results
are provided in Table 4.4 where an entry ol'? and indicate whether the particular
type of dynamic slice could be computed or could not be compad respectively. In
addition, the presence OP indicates that the faulty code was indeed captured by the

computed dynamic slice. In other words, although in general dynamic slice may or

88

may not capture the faulty code, for the failures studied theomputed dynamic slices
did contain the faulty code. Thus the slicing criteria usedn computing the various

types of dynamic slices are highly e ective.

Table 4.4 . Applicability of dynamic slice types.

\ Program | LOC | EXEC (%LOC) | BwWS | FwS | BiS |

ex 2.5.31 (a) || 26,754] 1871(6.99%) | , | . | '
(b) | 26,754] 2198 (8.22%) | - | -
(c) |[26,754] 2053 (7.67%) | '~ | = | _
| grep 2.5] 8581 | 1157 (13.48%) | T
grep 2.5.1 (@) | 8,587 | 509 (5.93%) T
(b) [8,587 | 1123 (13.08%) .
(c) || 8587 | 1338 (1558%) | _ | « |
make 3.80 (a) || 29,978] 2277 (7.60%) | - T
(b) | 29,978] 2740 (9.14%) | - | = |
gzip-1.2.4] 8,164 | 118 (145%) | 1T
ncompress-4.2.4]| 1,923 59 (3.07%) - - -
polymorph-0.4.0| 716 45 (6.29%) - - -
tar-1.13.25 | 25,854 445 (1.72%) | - .
bc-1.06] 8,288 | 636 (7.67%) | . | . | -
tidy-34132 || 31,132 1519 (4.88%) | ST
s-ex-v4 || 12,418] 1631 (13.13%) | ' | & | '
s-ex-V5 || 12,418| 1882 (15.16%) | . | '
s-ex-v6 | 12,418| 424 (3.41%) | _ L.
s-ex-v7 | 12,418] 2045 (16.47%) | v -
s-ex-v8 | 12,418 610 (4.91%) | _ L.
s-ex-v9 | 12,418] 1396 (11.24%) | T
s-ex-v10 | 12,418] 1683 (1355%) | — | ' | .
s-ex-vil || 12,418 1749 (14.08%) | " "

It is also observed that while each dynamic slicing techniguwas applicable in
well over half of the 23 failures studied, there were few fares for which each of
the technique could not be applied. In particular, BwS couldhot be computed for
5 of the 23 failures, FWS could not be computed for 3 of the 23iltaes, and BiS
could not be computed for 6 of the 23 failures. In addition, its observed that while

there was no failure for which all three techniques could ndie applied, there were

89

failures where only one type of slicing technique was found be applicable. It is also
shown that in many cases all three techniques were applicabl In conclusion, the
results of the experiments show that although a single dynamslicing technique may
not be applicable to all failures, it is highly likely there &ist other dynamic slicing
techniques taking advantage of di erent types of evidence#\nd, it is often the case
that multiple slicing techniques can be used in combination

Let us brie y discuss the reasons for each of the dynamic shg techniques not

being applicable as observed in the failed runs studied.

(No output.) Backward slicing was found to be not applicableor grep. As
explained in previous sections, the faults present igrep caused the program to
terminate without the execution of any output producing staement (although
the correct output is not no output). Since backward slice isomputed starting
at the execution instance of a statement that produced an increct output

value, for failing runs ofgrep, no backward slicing criteria was available.

(No failure inducing input.) Forward slice containing the oot cause could not
be computed fors ex versionsv6; v8; and vll. We observed two situations
in these programs. First, in some cases the fault was in forni an incorrect
constant assignment (i.e., the constant value used was impect). As a result,
the program failed on any input and the error did not appear irany computed
forward slice. In other words, the failure is not induced bynput. Second
situation observed is as follows. To identify the failure iducing input, according
to the delta debugging algorithm by Zeller [83], it is requied to begin with
two known inputs: one on which the program fails and anotherrowhich the
program runs successfully. Unfortunately the fault was shcthat there was no
input in the given test suite for which the program did not fal. Therefore the

delta debugging algorithm could not be applied successiull

(No critical predicate.) Bidirectional slice could not be omputed for some

90

versions of ex 2:5:31, grep 25:1, and s ex. This is because a critical
predicate could not be identi ed. The reason why sometimesaitical predicate
cannot be found is because none exists. For example, if thegbis complex,
simple switching of a single branch outcome may not result the correct output

being generated.

Thus, there are di erent situations under which each of the laove technique fails.
Therefore to enable the use of dynamic slicing in fault locan across a broad range

of programs and faults it is important to consider multiple ypes of dynamic slices.

4.5.2 Dynamic Slice Sizes

If dynamic slicing is not used, the programmer must searchladtatements executed
during a failed run for faulty code. However, by employing dyamic slicing the size
of the fault candidate set can be reduced from the set of exeed statements. In this
section the degree to which this reduction is achieved willebevaluated for the three
kinds of slices (BwS, FwS, and BiS). The sizes of these thrggeés of slices will also
be compared to determine if one kind is preferable over thehar types.

Lets consider the results presented in Table 4.5. In this téd LOC is the lines of
code in each program while EXEC is the lines of code that wergezuted during the
failing run being used to locate faulty code. The lines of cedbelonging to each of
the dynamic slices (BwS, FwS and BiS) are also given. Finaltite MIN column gives
the type and size of the smallest of the three kinds of slices.

First it can be observed that even though the executed lined oode EXEC as a
percentage of total lines of code LOC ranges from only 1.45%16.47%, EXEC is still
quite large (> 1000 in 15 out of 23 cases). Therefore reduction in the sizetloé fault
candidate set is highly desirable. Second the data shows ththe dynamic slicing
techniques give signi cant reductions. The BwS, FwS, and Bi exceed a thousand

inonly 1, 4, and 2 cases respectively. In parentheses thees$ sizes as a percentage

91

of the executed statements are also given. It can be observiétit all three kinds

of dynamic slices, when applicable, reduce the size of thailtacandidate set quite
signi cantly. The size of BwS ranges from 2.39% to 47.08% oKEC. The size of FwS
ranges from 0.90% to 63.18% of EXEC. Finally the size of BiSrrges from 1.54% to
60.25% of EXEC.

The fault candidate setmetric FCS(xS) indicates the fraction of lines of code
that are in the fault candidate set across all the benchmarkahen slice of the type
XS is used. It is the ratio of the total lines of code when a slicef type xS is used
(P Sizg(xS)) to the total lines of code that are being executedFE EXEC). However,
since all kinds of slices can not be computed in all executgnthe executions are
di erentiated into those where the slice can be computeddpp(xS)) and those where

it cannot be computed App(xS)). The full formula thus reads:

, P
Slzg(xS) + mps) EXEC
a1 EXEC
From the data in Table 4.5 one can nd thatFCS(BwS) = 0.3781, FCS(FwS) =

0.4919 and FCS(BIS) = 0.4920. Hence, using backward sliceBvS), on average,

FCS(x§) = — P

a programmer needs to look at 37.8% of the executed statem&ntFor forward and
bidirectional slices this number is just over 49%. Thus acoding to this metric all
three techniques are very e ective.

From the MIN column in Table 4.5 it is observed that no one typef dynamic slice
is consistently the smallest. Out of 18 cases for which a bagkrd dynamic slice were
computed, in 8 the backward dynamic slice is the best choicee(, it is the smallest).
Out of 20 cases where a forward dynamic slice was computedircases the forward
dynamic slice is the smallest. Finally, out of 17 cases wheaebidirectional slice was
computed, in 6 it is the smallest. From this perspective theofward dynamic slice
is slightly better than backward dynamic slice which is in tun slightly better than

the bidirectional dynamic slice. From the MIN column it can #so be observed that

92

in only 1 case the smallest slice size exceeds a thousand an@ icases the slice size
is no more than 50. The numbers in parentheses are slice siassa percentage of
LOC. As shown by the data, this number is quite small rangingdm 0.04% to 6.98%.
Given that the numbers in this range are quite small, it is wadh pointing out that a
substantial part of the reduction is the result of many statenents in the program not

being executed at all during the failed runs.

Table 4.5 . Comparison of dynamic slice sizes.

Program || BwS (%EXEC) | FwS (%EXEC) | BiS (Y% EXEC) || MIN (%LOC) |
ex 2.5.31 (a) 695 (37.15%) 605 (32.36%) 225 (12.03%) || BiS: 225 (0.84%)
(b) 272 (12.37%) 257 (11.69%) T FwS: 257 (0.96%)
(c) 50 (2.44%) 1368 (66.63%) - || BwsS: 50 (0.19%)

grep 2.5 - | 731 (63.18%) | 88 (7.61%) || BiS: 88 (1.03%) |
grep 2.5.1 (a) 32 (6.29%) 111 (21.81%) FwsS: 32 (0.37%)
(b) 599 (53.34%) - || FwS: 599 (6.98%)
(c) - 12 (0.90%) 453 (33.86%) FwsS: 12 (0.14%)
make 3.80 (a) 981 (43.08%) 1239 (54.41%) | 1372 (60.25%) || BwsS: 981 (3.27%)
(b) 1290 (47.08%) 1646 (60.07%) | 1436 (52.41%) BwS: 1290 (4.30%)
gzip-1.2.4 34 (28.81%) 3 (2.54%) 39 (33.05%) || FwsS: 3 (0.04%)
ncompress-4.2.4 18 (30.51%) 2 (3.39%) 30 (50.85%) FwsS: 2 (0.10%)
polymorph-0.4.0 21 (46.67%) 3 (6.67%) 22 (48.89%) FwsS: 3 (0.42%)
tar-1.13.25 105 (23.60%) 202 (45.39%) 117 (26.29%) || BwS: 105 (0.41%)
bc-1.06 204 (32.07%) 188 (29.56%) | 267 (41.98%) || FwS: 188 (2.27%)
tidy-34132 554 (36.47%) 367 (24.16%) 541 (35.62%) FwsS: 367 (1.18%)
s- ex-v4 39 (2.39%) 877 (53.77%) 37 (2.27%) || BiS: 37 (0.30%)
s- ex-vb 692 (36.77%) 1187 (63.07%) - || BwS: 692 (5.57%)
S- ex-v6 156 (36.79%) - - || BwS: 156 (1.26%)
S- ex-v7 243 (11.88%) 910 (44.50%) 836 (40.88%) || BwS: 243 (1.96%)
S- ex-v8 - - 280 (45.90%) || BiS: 280 (2.25%)
S- ex-v9 236 (16.91%) 535 (38.32%) 230 (16.48%) || BiS: 230 (1.85%)
s- ex-v10 727 (43.20%) 970 (57.66%) | 727 (43.20%) || BWS: 727 (5.85%)
s- ex-vil 102 (5.83%) - 27 (1.54%) || BiS: 27 (0.22%)

4.5.3 Multiple Points Dynamic Slices

In the preceding section a relative evaluation of the threeypes of dynamic slices
was carried out. In contrast in this section the synergy of thse techniques is stud-
ied, which is essentially the motivation for themultiple points dynamic slicingthat
was proposed earlier. In particular, the goal of this expenent is to study whether
multiple points dynamic slices are signi cantly smaller tlan the individual dynamic

slices.

93

Dynamic Chops. First the sizes of multiple points dynamic slices were obtaed
by intersecting the backward dynamic slice with the forwarddynamic slice. The
resulting data is given by the column labeledynamic Chopin Table 4.6. The size
of this multiple points dynamic slice with the size of the smiger of the BwS and FwS
dynamic slices which is given in column labeleahin (BwS; FwS) in the table. Only
this data is provided for those cases where both BwS and FwSrei@pplicable since
only in these cases can a dynamic chop be computed. From theala Table 4.6 one
can tell that the size of this dynamic chop can be signi canyl smaller than the size
of the smaller of the BwS and FwS slices. The numbers in pardmeises give the sizes
of the dynamic chops as a percentage of the sizesnoih (BwS; FwS). As shown in
the table, in 7 cases out of 13, the size of the dynamic chopcsliis less than half the

size of the smaller of the BwS and FwS dynamic slices.

Table 4.6 . Sizes of dynamic chops and bidirectional dynamic chops.

Program || min(BwS,FwS) | Dynamic Chop | min(BwS,FwS,BiS) | Bidirectional Dynamic Chop |

ex 2.5.31 (a) 605 256 (42.31%) 225 27 (12.00%)
(b) 257 102 (39.69%) - -
(c) 50 5 (10.00%) - -
| grep 2.5 | - | - I 88] 86 (97.73%) |
grep 2.5.1 (a) - - 32 25 (78.13%)
(b) - - - -
(c) - - 12 12
make 3.80 (a) 981 739 (75.33%) 981 739 (75.33%)
(b) 1290 | 1104 (85.58%) 1290 | 1051 (81.47%)
gzip-1.2.4 3 3 3 3
ncompress-4.2.4 2 2 2 2
polymorph-0.4.0 3 3 3 3
tar-1.13.25 105 103 (98.09%) 105 45 (42.86%)
bc-1.06 188 102 (54.26%) 188 102 (54.26%)
tidy-34132 367 164 (44.69%) 367 161 (43.87%)
S- ex-v4 39 7 (17.95%) 37 7 (18.92%)
s- ex-v5 692 544 (78.61%) - -
S- ex-v6 - - - -
S- ex-v7 243 63 (25.93%) 243 63 (25.93%)
S- ex-v8 - - - -
S- ex-v9 236 112 (47.46%) 230 112 (47.46%)
S- ex-v10 727 574 (78.95%) 727 574 (78.95%)
S- ex-v1ll - - 27 27

94

Bidirectional Dynamic Chop. Second the sizes of multiple points dynamic slice
were obtained by intersecting all three dynamic slices: Bw3wS, and BiS. The
resulting data is given by the column labeledidirectional Chop in Table 4.6. The
sizes of bidirectional dynamic chops are compared with th&ss of the smallest slices
of the BwS, FwS, and BiS dynamic slices which are given in thelamn labeled
min (BwS; FwS; BiS). This data is only provided for those cases where all three
(BwS, FwS, and BiS) were applicable. From the data in Table 8.one can see that
the sizes of the bidirectional dynamic chops can be signi ody smaller than the
sizes of the smallest slices of the BwS, FwS, and BiS dynamiices. The numbers
in parentheses give the sizes of bidirectional dynamic chops a percentage of the
sizes ofmin (BwS; FwS; BiS). As one can see in 6 cases out of 11, the size of the
bidirectional dynamic chop is less than half the size of themallest of the BwS, FwS,
and BiS dynamic slices. Therefore bidirectional dynamic dpping is a very promising

technique.

45.4 Discussion

Finally lets summarize the bene ts that the dynamic slicingtechniques studied pro-
vide to the programmer in carrying out fault location. Table4.7 summarizes the
number of lines in the fault candidate set (FCS) produced usg the techniques de-
scribed earlier which when compared to the total lines of ced(LOC) in the test

programs is very small. The numbers in parentheses are thees of FCS as a per-
centage of LOC. As one can see, in 15 cases this percentag®ismore than 1%. In all

other cases it is a few percent. However, in a few cases the F&fatains a signi cant

number of statements. In these cases the statements contaihcan be ranked accord-
ing to their dependence distances from the erroneous outpas proposed in [52, 88].
As a study in [88] illustrated, such ranking leads to the usenaving to examine less

than half of the statements in a backward dynamic slice. Finly, fault location tech-

Table 4.7 . Summary of dynamic slice sizes.

\ Program | LOC | FCS (%LOC) |
ex 2.5.31 (a) || 26,754 27 (0.10%)
(b) || 26,754| 102 (0.38%)

(c) || 26,754 5 (0.02%)
\ grep 25] 8581| 86 (1.00%))|
grep 2.5.1 (a)|| 8,587 25 (0.29%)
(b) 8,587 | 599 (6.98%)

(9] 8,587 12 (0.14%)

make 3.80 (a)|| 29,978| 739 (2.47%)
(b) || 29,978| 1051 (3.51%)

gzip-1.2.4| 8,164 3 (0.04%)
ncompress-4.2.4 1,923 2 (0.10%)
polymorph-0.4.0 716 3 (0.42%)
tar-1.13.25 || 25,854 45 (0.17%)
bc-1.06| 8,288| 102 (1.23%)
tidy-34132 || 31,132| 161 (0.52%)
s-ex-v4 || 12,418 7 (0.06%)
s-ex-v5 || 12,418 | 544 (4.38%)
s-ex-v6 || 12,418| 156 (1.26%)
s-ex-v7 || 12,418 63 (0.51%)
s-ex-v8 || 12,418| 280 (2.25%)
s-ex-v9 || 12,418| 112 (0.90%)
s-ex-vl0 || 12,418| 574 (4.62%)
s-ex-vll || 12,418 27 (0.22%)

95

96

Table 4.8 . Data slices (DS) and backward dynamic slices (BwS).

[Program || DS (Exec%) [BwS (Exec%) |
gzip-1.2.4 14 (11.86%) 34 (28.81%)
ncompress-4.2.4 13 (22.03%) 18 (30.51%)
polymorph-0.4.0 17 (37.78%) 21 (46.67%)
tar-1.13.25 44 (9.89%) 105 (23.60%)
bc-1.06 76 (11.95%) 204 (32.07%)
tidy-34132 148 (9.74%) | 554 (36.47%)

niques such as those presented eventually require a prograer to spend e orts in
understanding the cause of a failure and correcting the faylcode. This e ort can be
reduced by using dynamic slicing based approach because only is the programmer
able to examine faulty code but also the statements on whiclé faulty code depends
and the statements that depend upon the faulty code. Examing the dependence
relationships is very helpful in understanding the cause dhe failure. Finally it is
worth mentioning that the examples shown in earlier sectia which were taken from
the failures studied in the experiments, illustrated that bcating the fault by exam-
ining the dynamic slices can be quite easy in some cases. Aiddial examples from
the considered bugs also illustrating a similar behavior ocabe found in case studies

presented in [84].

4.6 Other Types of Dynamic Slices

There are other types of dynamic slices than the ones discedsthus far. All the
previous discussed dynamic slices consider both data degences and control depen-
dences during computation. If only data dependences are siatered and the DDG is
traversed backward, the resulting slices are calletynamic data slicegDS) [87, 88].
It is easy to identify that a program has been a ected by a meng bug because
it crashes with a segmentation fault error. The programmeran use dynamic data

slicing instead of traditional backward dynamic slicing insuch situations. The reason

97

why data slices are so e ective for memory bugs is that the pgoam crash is caused
by the presence of amnexpected dynamic data dependerfzetween the point at which
memory is corrupted and the later point at which the corrupte value is used. In fact
the memory corruption typically corrupts a pointer and its Lse causes a crash because
it dereferences the pointer. Dynamic data slice capturesl alppropriate dynamic data
dependences including the unexpected dynamic data depende and therefore it is
able to capture faulty code. To illustrate the above, let usaview the example of
gzip in Figure 4.2. Since the unexpected dynamic data dependerfcem statement
40, where variableenv was de ned by mistake, to statement 1344, where variable
env was used, is captured by the data slice, the bug can be easibcated without
considering any control dependences. Data slices have beemputed for the memory
bugs in Table 2.3 presented in chapter 2. All the memory bugsene captured by data
slices. In addition, as shown in Table 4.8, data slices aregsi cantly smaller than
backward dynamic slices Thus, data slices instead of full backward dynamic slices
ought to be computed when a bug can be identi ed as a memory ane

A backward dynamic slice may not be able to capture the errorven though the
wrong output is actually caused by the error. Figure 4.9 giwean example. It is taken
from the gzipversion three provided by the website [2] of Siemens suite]4 The error
is in the assignment tacsaveorig_name The correct code isaveorig_name=!no_.name
In the failed run, since saveorig_-name contained the wrong valud-alse, branch S3
was not taken such thatflags had the wrong value 0 while it should have been de-
ned as ORIG _NAME at S3. This wrongflags value was nally propagated to the
output le. The backward dynamic slice BwS of the wrong output does not contain
the error because S4 depends on S2. The fact that S4 could hénal a di erent
value if S3 had taken the other branch can not be captured by ¢hbackward dynamic
slicing technique itself.

In such a case, a relevant slice is [33] computed instead whis larger than the

backward dynamic slice. Inrelevant slicing a potential dependences introduced

98

I"# $%8&. \\
Cy+))- Y
1) 01)1) -
&
——» 4)) 23 — > 2)23

Figure 4.9 . Gzipv3rl

between S4 and S3 such that S1 is reachable from the wrong auttpHowever, these
potential dependence edges are introduced for each node iD® which can result

in a much larger slice. Fortunately, in the real bugs studiedelevant slices were not
needed and the backward dynamic slices were e ective enoughcapture all of them.

In general, the same fact that certain code did not get execed while it should

have due to the bug may result in other types of the previouslgiscussed dynamic
slices such as forward slices and bidirectional slices gdreting the root cause as well
[82].

4.7 Summary

In this chapter, two new types of dynamic slices were introdied { forward slices on
minimal failure inducing input di erences and bidirectioral slices on critical predi-
cates. These new types of dynamic slices, together with theatlitional backward
dynamic slices, broaden the applicability of dynamic sling. Because while all types
of dynamic slices may not be applicable in certain situatia it is highly unlikely
none of them is applicable. In addition, if multiple types ofdynamic slices can be
computed for a failed run, a much smaller fault candidate setan be produced by
intersecting them. In 15 out of the total 23 bugs under studythe fault candidate

set is less than 1% of the lines of code. In 6 out of the 11 bugs ¥ehich the BwsS,

99

FwsS, and BiS are all available, the intersection of the threg/pes of slices, or the
bidirectional dynamic chop, is less than 50% of the smallestf the three types of
slices. In the subsequent chapters, it will be shown how vaupro les can also be

collected and used to further reduce the fault candidate set

100

Chapter 5
Efficiency of Value Profiles

Earlier chapters discussed an e cient representation of geendence pro les as well as
its use in generating fault candidate sets. Next the explation of value pro les will be

considered. In this chapter, an e cient representation forvalue pro les is developed
and in the next chapter it will be shown how value pro les can b used to produce
smaller fault candidate sets. Value pro les are compressesing a two tier strategy.

First, redundancy is removed from the value pro les in a sintar fashion to dependence
pro les. Second, a generic stream compression techniquale/eloped which provides

both a high compression rate and the feature of bidirectioh&raversibility.

5.1 Removing Redundancy in Value Pro les

It is well known that subcomputations within a program are afen performed multiple
times on the same operand values { this observation is the hagor widely studied
techniques for reuse based redundancy removal [70]. Nexethame observation can
be exploited in devising a compression scheme for sequeniceatues associated with
statements belonging to a node in the WET.

The compression scheme can be illustrated using the examgdelow in which
the value ofx is an input to a node and using this value, the values of and z are
computed. Further assume that while the node is executed fotimes, only two unique
values ofx (x; and x,) are encountered in the value sequeng&éalg[0::3] = [X1X2X1X2].
Given the nature of the computation, the values of and z also follow similar patterns.
The value sequences can be compressed by storing each uniglee produced by a
statement only once in theUV alq0::1] array. In addition, the proposed scheme

remembers the pattern in which these unique values are enobered. This pattern

101

is of course common to the entire group of statements. The patn [0101] gives the
indices of values in theUV alg] array that are encountered in each position. Clearly
the V alg[0::3] corresponding to each statement can be determined usirgetfollowing

relationship.

V aluedi] = UV aluegdP attern([i]]

Before After: Pattern=[0101]
Statement | Vals[0::3] || Statement | UV alg[0::1]
X [X1X2X1X2] X [x1X2]
y="F1(X) | [yayayiy2] || y=f(x) [y1y2]
z=9g(xy) | [mzez120] || 2= g(X;y) [212,]

The above technique yields compression because by storihg pattern only once,
it becomes possible to eliminate all repetitions of values value sequences associated
with all statements. The ease with which the sequence of vas can be generated
from the unique values is a good characteristic of this comgssion scheme. The com-
pression achieves space savings at the cost of slight ina@#n the cost of recovering
the values from WET.

In the above discussion the situation considered is such thall of the statements
shared a single pattern. In general, multiple patterns mayddesirable because di er-
ent subsets of statements may depend upon di erent subsetsioputs that are either
received from outside the node or are read through input staments within the node.
Statements belonging to a node are subdivided into disjoirgroups as follows. For
each statement the input variables that it depends upon (dectly or indirectly) is

rst determined. Groups are rst formed by including all statements that depend
upon exactly the same inputs into the same group. Next if a gop depends upon set
of inputs that are a proper subset of inputs for another groupthen the two groups
are merged. Finally input statements within the node on whit many groups depend
is included in exactly one of the groups. Once the groups arerfed, for each group

a pattern is found and the values are compressed accordingtte groups pattern.

102

(b) After compression.

Figure 5.1 . Value compression.

In Figure 5.1 formation of groups for nodd> 3 is illustrated. The rst gure shows
the value sequences associated with statements before cogspion. The statements
depend upon values ofi and v from outside the node and the value of that is read
by a statement inside the node. Two groups are formed becauseme statements
depend upon values ok and v while other statements depend upon values of and
u. The statement that reads the value ok is added to one of the groups. Once the

groups have been identi ed, patterns are formed for each grp as shown.

103

5.2 Prediction Based Compression of Value Pro les

In the next step of compression information labeling a WET aabe viewed as con-
sisting of two streams of values arising from the sequence<of;v > pairs labeling a
node: one corresponding to the timestampg'¢) and the other corresponding to the
values {'s).

The stream compression algorithm should be designed suctatlihe compressed
stream of values can be rapidly traversed. An analysis algthhm using the WET rep-
resentation may traverse the program representation in faard or backward direction
(recall that is why all edges in WET are bidirectional). Thus during a traversal, it is
expected that the pro le information, and hence the valuesni above streams, will be
inspected one after another either in forward or backward diction. Unfortunately
most of the existing algorithms for e ectively compressingtreams areunidirectional,
i.e., the compressed stream can be uncompressed only in oimeddion typically start-
ing from the rst value and going towards the last. Examples bsuch algorithms
include compression algorithms designed from value prettics which were used for
compressing value and address traces in [16]. The problenthaising a unidirectional
predictor is that while it is easy to traverse the value strem in the direction corre-
sponding to the order in which values were compressed, trasmg the stream in the
reverse direction is expensive. The only way to e ciently taverse the streams freely
in both directions is to uncompress them rst which is cleayl undesirable. Sequitur
[62] which was used for compressing control ow traces in [b@nd address traces
in [21] yields a representation which can be traversed in Hdodirections. However,
it is well known that Sequitur is not nearly as e ective as theabove unidirectional
predictors when compressing value streams [16].

To overcome the above problem with existing compression alithms, a novel
approach to constructingbidirectional compression algorithms is introduced. The ap-

proach can be used to convert amnidirectional value predictor based compression

104

algorithm [16] into a bidirectional one. Lets consider the highly e ective FCM pre-
dictor [72, 71]. A unidirectional FCM predictor compressea stream in the forward
direction such that a value is successfully compressed if it can be @mtly predicted
from its left context (i.e., pattern of immediately precedingn values); otherwise the
value is saved in uncompressed form. A look up tablEB is maintained to store
predictions corresponding to a limited number of left contd patterns encountered
in the past. The index of the entry at which the prediction fora pattern is stored is
derived by hashing the pattern into a number.

If a value is correctly predicted by the look up tablelT B using the left context, a
bit 1 is created in the compressed stream. If a prediction provided by the look up
table TB using the left context does not match the value® being compressed, then
a bit sequence ok v 0 > is created in the compressed stream while the look up
table TB is updated usingv® to enable future predictions. Herev denotes the bits
for v. Clearly for a stream compressed in the above fashion onlyni@rd traversal is

possible.

5.2.1 Bidirectional compression derived from the FCM predi ctor

Now lets look at the design of a bidirectional predictor. In grticular, lets look at a
bidirectional counterpart of the FCM predictor [72, 71]. A hdirectional di erential
FCM predictor [30] can be constructed in a similar way. NormaFCM is forward
compressed and theriorward traversed. If the direction of table lookup is changed
from using left context to using right context, which means future values are used to
predict the current value instead of previous values beingsad to predict next value,
a forward compressed andbackwardtraversed FCM can be constructed. Similarly, a
backwardcompressed andorward traversed FCM can be developed. A bidirectional

FCM(BFCM) can be achieved by using these two FCMs back to back

105

Before the introduction of the algorithms for bidirectiona traversal of the value
stream, lets introduce the notation. Letm be the length of the uncompressed value
stream, n be the context size a BFCM can be viewed as a tuple ok Strm; FRTB,
BLTB;i;l;r; Context > where:

Strm is the compressed bit stream composed of two substreantsR and BL .
FR is obtained by compressing values at positions 1 through (1) in forward
direction (F) using right context (R). BL is obtained by compressing values at
positions (+ n) through (m 1) in the backward direction(B) using the left

context (L).

Context is a bu er which contains the current context ofn uncompressed values

from position i to position (i+ n 1).
FRTB is the lookup table forFR while BLTB is the lookup table forBL.

Finally, | is the end bit position in Strm of FR while r is the starting bit
position of BL in Strm. The reason for providing extra bits BUF) between
positions| and r will be discussed in greater detail later { essentially thesbits
provide extra space needed to accommodate the di erencestieen forward

and backward compression rates.

There are four types of basic operations for a BFCM on which étraversal opera-
tions are built. FORWARD _COMPRESS compresses a value into Strm starting at

106

bit position | using FRTB. Parameter Context is the right context for v. The di er-
ence between this operation and the forward compressing ogtgon in a conventional
FCM is that FORWARD _COMPRESS uses theright context instead ofleft context.
Using right context to compressorward provides the capability to uncompress in the
backwarddirection. BACKWARD _.UNCOMPRESS consumes bits in the backward
direction starting at |, which were generated earlier byFORWARD _COMPRESS
operation, to uncompress the value to the left of the currentontext. The other
two operations, FORWARD _UNCOMPRESS and BACKWARD COMPRESScan be
constructed in a similar way. The details of all four operatins are given in Figure 5.2.

To traverse one step forward, BFCM rst forward uncompressethe value to the
right of Context, U;,, by looking at the bits starting at Strm, and then shifts
Context one step forward and uses the ne®@ontext to forward compress the value
to the left. Backward traversal can also be similarly de ned The implementation of
the traversal operations in terms of the four basic operatis is given in Figure 5.3.
Note that it is assumed that a 32 bits machine is used. Henceafvalue is predicted,
it consumes one bit space, if not, it consumes 32+1 bits of spa

The example in Figure 5.4 illustrates the above algorithm. fie rst gure shows
a portion of the uncompressed stream while the second gurd@vs the state of
the stream and look up tables corresponding to four conseowg positions of the
context which consists of three uncompressed values. No teaitwhether the stream

is traversed forwards or backwards, the sequence of statex@untered is the same.

5.2.2 Accounting for the di erence in forward and backward c ompression

rates

One implementation problem arises due to di erent predictin rates of the two FCMs.
As a result the amount of space needed to store the stream widlry at di erent points

of the traversal. To handle this problem the design goal is tallocate enough extra

107

Basic Operations

FORWARD COMPRESS(v; Strm;|; FRTB; Context)
(1) index = hash(Context)
(2) if FRTB]Jindex] = v then
3 Strmy 41 =< 1>

4 I=1+1

(5) else

(6) Strmy +33 =<V 0>
(7) 1=1+33

(8) FRTB[index] = v

(9) endif

FORWARD UNCOMPRESS(Strm;r; BLT B; Context)
(1) b= Strm,

2) r=r+1

(3) index = hash(Context)
(4) if b=1 then

(5) v = BLTB [index]
(6) else

(7) V= StrMp . +a32

(8) r=r+32

9 BLTB [index] = v
(10) endif

(12) return v

BACKWARD _COMPRESS(v; Strm;r; BLT B; Context)
(1) index = hash(Context)

(2) if BLTB [index]= v then

3) Strm, g =< 1>

(4) r=r 1

(5) else

(6) Strm; 33 =<0 V>

(7 r=r 33

(8) BLTB [index] = v

(9) endif

BACKWARD _UNCOMPRESS(Strm;|; FRTB; Context)
(1) b= Strm,

@2 I=1 1

(3) index = hash(Context)
(4) if b=1 then

(5) v = FRTB[index]
(6) else

(7) v=Strmy 32

(8) =1 32

9) FRTB[index] = v
(10) endif

(11) return v

Figure 5.2 . Four basic operations used by BFCM.

108

Traverse

{ < Strm; FRTB;BLTB; Context;i;l;r> s the bit stream to traverse;
STEP_FORWARD (Strm; FRTB; BLT B; Context;i;l;r)

(1) v= FORWARD .UNCOMPRESS(Strm;r;BLTB; Context)

(2) t= Context[0]

(3) Context = Context[l:n 1] v

(4) FORWARD _COMPRESS(t; Strm;|; FRTB; Context)

B) i=i+1l

(6) return v

STEP_BACKWARD (Strm; FRT B;BLT B; Context;i;l;r)

(1) v=BACKWARD _UNCOMPRESS(Strm;|; FRTB; Context)
(2) t= Context[n 1]

(3) Context = v Context[0:::in 2]

(4) BACKWARD _COMPRESS(t; Strm;r; BLT B; Context)

B) i=i 1

(6) return v

Figure 5.3 . Forward and backward traversal by a single step.

space so that at any point during traversal there is enough ape available to handle
the stream. The space allocation is performed in a manner that any point in
time the context (uncompressed values) are held in th@ontext bu er while all other
values (forward and backward compressed values) are keptSirm storage. The space
allocated between andr in Strm (referred to asBUF) is there to accommodate the
di erence between forward and backward compression rateBor example, when the
cursor moves forward or backward by one step, it is possiblaat the value that is
uncompressed frees up one bit (i.e., the value had been coegsed to one bit) while
the value that is compressed requires 33 bits (i.e., the valwcannot be successfully
compressed). The additional bits allocated accommodate ébe extra bits. In fact
the BUF size is computed in such a way that whenever extra space is dee it is
available in BUF.

To ensure that there is su cient extra space allocated inBUF so that forward
and backward traversals never cause the compressed stredme $0 over ow the al-
located space, an algorithm is used as described in Figur®.5This algorithm rst

forward compresses all the values into a temporary bit streafimp. However, T mp

109

c b b c b b

(a) Uncompressed.

1|0/ c 1
FRTB BLTB
"cbb" —| b Context "cbb" —=| ¢
"bbe" | C c|b|b "bbc" —=| b
"beb” = ¢ "beh” —= b
1 0o c 1
FRTB BLTB
"chb" b "chb" c
eobr = Context b=
"bbc" —= C "bbc" - b
b|bj|c
"beb” = ¢© “bcb" —={ b
1] c 0 1
FRTB BLTB
"cbb" — b Context "cbbh" —=| ¢
nbbcn | [b c b "bbc" o c
"beb” = b "beb" —= b
1| c 0|1
FRTB BLTB
"cbb" — b Context "cbb" —| ¢
"bbc” | € c|b|b| ‘"bbc—= c
"bch" —=| b "bch" —=| b

(b) Compressed.

Figure 5.4 . Example of bidirectional FCM compression.

110

is not bidirectional traversable yet. A backward traversais performed to determine

the amount of additional space that needs to be allocated. més 13 to 17 in the

algorithm pre-

allocate extra space. Conditior < | + 33 being true means that

the next BACKWARD _.COMPRESS operation may overwrite the bits generated by
FORWARD COMPRESS operation previously, in other words, both the FCMs en-

counter low prediction rate and then the allocated space mayot be enough. In this

case, BFCM inserts some bu er space betwedfR and BL . After backwardtravers-

ing Tmp once with allocating bu er space to tolerate di erent predction rates, the
BFCM < Strm; FRTB; BLTB; Context; 0;l;r > is ready to be used for bidirectional

traversal.

Compress value stream

{ Vals is the uncompressed stream;

{ Tmp is a bit stream with INFINITE length;
COMPRESS (V als;vLen)

(1)
()
®3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

Context = Vals[0:::n 1]
sLen=0
for i=0to vLen n 1
Context = Context[1:::n 1] Vals[n + i]
FORWARD .COMPRESS (V alg[i]; Tmp; sLen; FRT B; Context)
endfor
r = skLen
| = sLen
for i=vlen n 1to0
v= BACKWARD _.UNCOMPRESS (Tmp;l; FRTB; Context)
Veom = Context[n 1]
Context = v Context[0:::n 2]
if r<I| +33 then
TmMPgr+ EXTRA)i:(sten + EXTRA) = T MPrsten
r=r+ EXTRA
sLen = sLen + EXTRA
endif
BACKWARD _COMPRESS (Veom; Tmp;r; BLT B; Context)
endfor
Strm = Tmpo::sLen
return < Strm;FRTB;BLTB; Context; O;l;r >

Figure 5.5 . Preparing streams for bidirectional traversal.

111

5.2.3 Bidirectional compression derived from a Last n predi ctor

Another predictor which has been used for unidirectional copression is the lastn
predictor [56, 17]. A bidirectional compression algorithns also derived using the last
n predictor. This is because studies have shown that while oedl performance of
both FCM and Last n predictors is quite good, there are also speci c situationshere
one predictor works well while the other does not and vice \& [16]. The full details
of bidirectional compression algorithm based upon last predictor are omitted due
to space limitations. However, the main cases of forward cpmession of a value are
summarized in Figure 5.6. Backward compression is similadnlike the bidirectional
FCM predictor only a single look up tableT B is used for both forward and backward

compression.

Compressed Uncompressed Compressed Uncompressed
.......... X=V, i i
32 bits log n bits
B Vo | = |V, R A B Vi | Via | | Ve
0 i n-1 0 i n-1

(a) Successful compression of ith value (forward direction).

Compressed Uncompressed Compressed Uncompressec
.......... X|: anyv — X'Vn-l
32 bits log n bits
B Vo Vi Vn-l B X Vi-l Vn-2
0 i n-1 0 i n-1

(b) Failed compression of ith value (forward direction).

Figure 5.6 . Bidirectional last n compression.

5.2.4 Selection

For each stream one is selected from several bidirectionadrsions of compression
methods. Initially all methods are used to compress the stien. After a certain

number of instances the method that performs the best up to #t point is picked.

112

The implemented methods include the FCM, di erential FCM (this is an adaptation
of FCM that works on strides [30]), last n, and last n stride. Br each type three

versions are created with di ering context size.

5.3 Experimental Results

The experimental setting is the same as mentioned in chapt@ The two tier com-
pression strategy is rst evaluated for value pro les. Thenthe performance of the
compression scheme on dependence pro les is also studiethaly, the overall com-

pression e ect on complete WETSs is evaluated.

5.3.1 Compression of Value Pro les

The rst experiment is about compressing value pro les usig the two tier strategy.
Table 5.1 shows the sizes of node labels, timestamp and vagegjuences, before and

after compression.

Table 5.1 . E ect of compression on value pro les.

Benchmark ts labels vals labels

Orig. | Orig./ Orig./ Orig. | Orig./ Orig./

(MB) Tier-1 Tier-2 (MB) Tier-1 | Tier-2
099.go 2614.12 37.96 47.13 1847.09 2.48 6.33
126.gcc 1391.60 50.06 | 126.63 945.03 3.15 17.62
130.li 2822.26 32.47 | 105.88 1894.48 3.83 17.33
164.gzip 2481.32 30.33 | 152.76 1733.13 1.66 4.02
181.mcf 2728.12 22.12 | 127.09 || 1875.21 2.37 7.02
197.parser 2347.92 30.61 | 101.82 1615.57 2.05 12.45
255.vortex 2324.87 53.51 | 176.55 1641.31 3.51 23.82
256.bzip2 2865.81 55.24 | 1171.6 2154.85 2.46 10.61
300.twolf 2633.64 27.36 69.49 || 1873.52 2.13 4.36

[Avg. |

2467.74 | 37.74 | 230.99 || 1731.13 | 263 | 1151

The above results show that while the average compressionioeof the tg labels is
very high, which is 231, the same is not true fovalue sequencethat label the nodes
(compression ratio for these is only 11.5). Compression dlwes is much harder {

even though the value compression algorithm is aggressithe compression ratios

113

for value sequences are modest in comparison to those foreéstamp sequences. The
main reason is that not as much patterns occur in value sequmes as in timestamp

sequences.

5.3.2 Using Prediction Based Compression for Dependence Pr oles

As described in chapter 2, dynamic dependences are représdnby annotating a
static dependence edge with a sequence of timestamp pains.chapter 3, a series of
optimizations have been developed to eliminate redundandy dependence pro les,
which can ba considered as the rst tier compression. Afterpplying the optimiza-
tions, the remained sequence &f ts,;ts, > on a dependence edge gives rise to two
streams, one corresponding to the rst timestampst{,'s) and the other corresponding

to the second timestampstg,'s). Each of the above streams can be compressed using
the prediction based compression technique. Table 5.2 peess the results. Here

Tier-1 denotes the optimizations introduced in chapter 3.

Table 5.2 . E ect of compression on dependence pro les.

Benchmark Edge labels
Orig. | Orig./ Orig./
(MB) Tier-1 | Tier-2

099.go 5008.12 | 9.00 | 26.00
126.gcc 2001.26 | 1537 | 118.94
130.1i 5682.32 | 11.36 | 84.74
164.gzip 547342 | 10.13 | 60.37
181.mcf 503854 | 7.62 | 46.56

197.parser 4766.38 15.57 | 133.92
255.vortex 4781.46 21.75 | 212.35
256.bzip2 6900.52 32.06 | 455.44
300.twolf 6159.03 7.05 34.43

[Avg. [5390.12 | 14.43 | 130.31

The results show that the prediction based compression piides very high com-
pression rates. Together with the redundancy removing optiizations (Tier-1), the
compression ratio is 130 on an average. The reduction of sige space is not the

sole goal. The other objective is to provide easy access tethompressed pro les.

114

Therefore, another experiment was carried out to compare ¢hexecution times of
backward dynamic slicing on the dynamic dependence graphmstheir original forms
(Orig.), after optimizations (Tier-1), and after optimizations and the prediction
based compressionTjer-2). In this experiment, the prior runs were cut at the
boundaries of from 114 and 139 Million intermediate level stements, which are very
close to the trace lengths used in previous sections. The eage times needed to
compute a backward dynamic slice after tier-1 and tier-2 cgpnession are a little over
14.34 seconds and 90.98 seconds respectively. While theroations in tier-1 only
speed up the slice computation, the slowdown incurred by thiger-2 compression is
reasonable given the gains in space savings. Note that thespense times for the
099.go benchmark are higher than other programs. Due to the complesontrol
ow structure of 099.go each node has several incoming edges and thus it takes

longer to identify the appropriate relevant edge during treersal.

Table 5.3 . Dynamic slicing on compressed DDGs (avg. over 25 slices).

Benchmark || Stmts Executed | Tier-1 | Tier-2 | Tier-2/
(Millions) (sec.)| (sec.)| Tier-1
099.go 132.52| 58.31| 412.44 7.07
126.gcc 139.46| 10.91| 17.74 1.63
130.1i 126.78| 10.00| 121.42 12.14
164.gzip 123.06 4,20 | 102.33 24.34
181.mcf 137.31| 17.47| 76.07 4.35
197.parser 122.12 1.55 4.69 3.02
255.vortex 119.50 4,75| 18.09 3.81
256.bzip2 128.25 2.76 3.90 1.42
300.twolf 114.85| 19.10| 62.15 3.25
| Avg. || 127.09| 14.34| 90.98| 6.78 |

5.3.3 Overall Compression of WETs

In earlier experiments, the compression of individual typef pro les was evaluated.

It would be interesting to study the overall performance oflie two tier compression

115

strategy on complete WETs, which contain control ow, value address, and depen-
dence pro le information. The overall e ect of the two tier compression strategy is
summarized in Table 5.4. While the average size of the origihnuncompressed WETs
(Orig. WET) is 9589 Megabytes, after compression their siz€€omp. WET) is re-
duced to 331 Megabytes which represents a compression rgtiarig./Comp.) of 41.
Therefore on an average the proposed approach enables sgwhthe whole execution
trace corresponding to program run of 647 Million intermedite statements using 331
Megabytes of storage.
Table 5.4 . WET sizes.

Benchmark Input Stmts Executed Orig. WET Comp. WET Orig./

(Millions) (MB) (MB) Comp.
099.go training 685.28 10369.32 574.65 18.04
126.gcc reflinsn-emit.i 364.80 5237.89 89.03 58.84
130.li ref 739.84 10399.06 203.01 51.22
164.gzip training 650.46 9687.88 537.72 18.02
181.mcf testing 715.16 10541.86 416.21 25.33
197.parser training 615.49 8729.88 188.39 46.34
255.vortex training/lendian 609.45 8747.64 104.59 83.63
256.bzip2 training 751.26 11921.19 220.70 54.02
300.twolf training 690.39 10666.19 646.93 16.49

[Avg. [n/a 646.90 [9588.99 | 331.25] 4133

In Figure 5.7 the relative sizes of the three main componentsf pro le data

(node timestamp sequences, node value timestamp sequeneesl edge timestamp
sequences) are shown before compression (Original), aftst tier compression (Af-
ter Tier-1), and after second tier compression (After Tie2). As shown in the table,
the contribution of value sequences to the total size increas in percentage following
each compression step since the degree of compression getidor value sequences
is lower.

Next the scalability of WETSs is studied so that it can be estimated the limit on
the length of a program run for which the whole execution trae can be realistically
kept in memory. For this purpose the impact of trace length orthe compression
ratios is studied. In Figure 5.8, the executions are dividemto ten intervals for each

benchmark (x-axis) and then the compression ratios (y-ajisire measured up to each

116

Original After-tier-1 After-tier-2 Ots-nodes Mvals-nodes Ots pairs-edges

100%
90%
80%
70%
60% -
50% -

40% I I
30%

20%
10% -
0%

o © N - oy
$° o o ¢ ¢
s

& o S &
g o &
& < N & ™
< Kaa D S <

0
e S IS
& & oS

Figure 5.7 . Relative sizes of WET components.
interval. From the results in Figure 5.8 it can be noticed thafor 7 out of 9 programs
the compression ratios either improve or roughly remain theame as the length of
the run increases. For benchmar256.bzip2 a sharp decrease of the compress ratio
is observed from the second interval to the third interval. tlis very likely due to the
switch of program phases. The new phase is substantially neodi cult to compress
compared to the previous one. As this phase nishes, its e egradually fades out

and the compression ratio araduallv recovers.
90

80 rd
= 70 075/
=] Yo
g 60 0.36 N
2 50 A e Q61 2069
o 2 rertes® T
g 30 | 0.62
1S 0.68 0.72 0.65
G 20 eeessesess sreseresss Sroresssss
© 10|

099.go 126.gcc 130.li 164.9zip 181l.mcf 197.parser 255.vortex 256.bzip2 300.twolf

Execution length (billion)

Figure 5.8 . Scalability of compression ratio.

Lets assume that the compression ratio remains constant ass the length of a
program run. Further recall that earlier experiments showhat the compressed WET
for execution of 647 Million Trimaran intermediate code st@ments takes approxi-
mately 331 Megabytes of storage. Therefore it can be showndwtrapolation that the
WET corresponding to a program run involving execution of 3. Billion Trimaran in-
termediate code statements consumes 2 Gigabyte of spacejalvhs the normal RAM
size for a workstation. It is a fairly long trace and thus can & used e ectively in fault
location and studying program behaviors when designing cqifers and architectures.

The times taken to construct the compressed WETs for the progm runs are

117

presented in Figure 5.9. Similar to the prior experiment, th executions were divided
into ten intervals with equal length and then the cumulativeconstruction times were
collected up to each interval. The results show that it take00-300 minutes to
construct the WETSs fully for most of the runs depending on theexecution lengths.
It can also be observed that the construction time increasedmost linearly with the

execution length.

400
350 A

EEE: B P e / 0.62/ 2 B - oo5—g2]
A A A A A A A 4

099.go 126.gcc 130.1i 164.gzip 181.mcf 197.parser 255.vortex 256.bzip2 300.twolf

Construction Time (Min.)

Execution length (billion)

Figure 5.9 . WET construction times.

5.4 Summary

In this chapter, a two tier compression strategy for value mrles is introduced, it
provides a 11X compression rate and the feature of forward éipackward bidirec-
tional traversibility. The second tier, which is a generic pediction based compression
technique, can be combined with the previously describetynamic dependence graph
(DDG) optimizations to achieve 130X compression on DDG sige Dynamic slices can
be computed for executions ranging from 114-130 millionstémmediate statements
on the compressed DDGs within 90 seconds.

Overall, the proposed two tier compression strategy can rede the space con-
sumption of a WET by the factor of 41.33. The execution of 3.9 iBion Trimaran
intermediate code statements produces a compressed WET oGiyabytes. In other

words, the space e ciency is around 4 bits per statement.

118

Chapter 6

Pruning Backward Dynamic Slices Using
Value Profiles

In this chapter, a ne-grained pruning technique of backwat dynamic slices based on
value pro les will be developed. The key observation is thaby carefully examining
the value pro le, many of the statements in a backward dynangi slice can be deter-
mined to be highly unlikely to contain a fault. In this chapte, backward dynamic
slices refer to dynamic slices in the form of dynamic depemd® subgraphs instead of
sets of statements. For ease of presentation, a di erent foulation of dynamic depen-
dence graphs is used, in which each node corresponds to alsiegecution instance of
a statement and each edge to a single exercising of a deperm#genAs a result, there is
no need to refer to timestamps in order to distinguish betweeexecution instances of
a statement or a dependence. Note that the presentation ofithtechnique does not
distinguish between statement and statement instance. Intleer words, a statement

refers to a statement instance if it is not otherwise specia

6.1 Pruning Backward Dynamic Slices

This section gives an overview of the pruning technique. Gam an observed incor-
rect value ,, a Pruned Backward Dynamic Sliceof ,, PDS(,), can be com-
puted, which contains a subset of statements from thBackward Dynamic Sliceof
o DS(o), that are likely to include faulty statements. Note that orly the rst
incorrect output is considered because the backward dynamnslice of this output
is usually the smallest among all the backward dynamic sliseof incorrect outputs.

Therefore, it is very likely to produce a small fault candidge set by pruning such a

119

slice.

It is observed that although DS(,) contains all statement instances that are
involved in computing ,, not all of these statements are equally likely to be involk
in causing the erroneous behavior. In particular, let us ceider a common situation
in which the program produces some correct outputsp(o's) before producing the
incorrect value ,. From the perspective of thep .,sand ,, itis possible to divide
the executed statements irDS(,) into two sets: May Set DS, (o), containing
executed statements fronDS(,) that are also involved in computing one or more

P

of the * | values; andMust Set DSt (o), containing executed statements from

DS(,) that were involved in computing none of thep , values. In other words:

DS(o) = DSmust(o) [DSmay(o)

DSmust (0) = DS(o) [DS(o)

DSmay(o) = DS(o) DSmust(o)

While the statements in theDSst (o) are always included in the pruned slice
PDS(o), the ones inDSya (o) may or may not be included inPDS(,). An
analysis is developed that computes for valuecomputed by each statement execution
S 2 DSmay(o) @ condence estimateC(v@s) between 1 and 0. High con dence
estimate for a statement execution indicates that it is higly likely that the statement
produced a correct value. Note that for simplicity it is assmed that one executed
statement de nes only one value. one The con dence estimaere computed using
the value pro les of the executed statements. Athreshold con dence is set such
that only statement executions inDSnay (o) that have a con dence of less than

are included in the pruned dynamic slic® DS (,). In other words:

120

correct

incorrect
@ Always included in PDS
@ Never included in PDS
@ May be included in PDS

Figure 6.1 . Pruning dynamic slice.

PDS (o) = DSmust(o) DSmay(0)

where; DS, (o) = fssts2 DSpay N C(v@5) < ¢

It will be shown later that the analysis may yield con dence alues of 1 for some
statement executions and thus they are pruned from the dynamslice irrespective of
the choice of , i.e. they are never included ilrPDS () for all

Figure 6.1 illustrates pruning of dynamic slices visually. It shows a dynamic
dependence graph of a computation that produces th%o values before producing

the incorrect value ,. DS is the Dynamic Sliceof ,. Subset of nodes inrDS

121

that form the Ideal Dynamic Slice(IDS) is shown { IDS originates at the point of
program error and contains only those statement executiorieat produce erroneous
values. The nodes irDS that are not present inIDS have been divided into three
categories. The nodes labeled in DS belong to DSst, as they are not involved
in computing the P o Values, and thus they are always included i DS the Pruned
Dynamic Sliceof ,. The remaining nodes inDS that are labeled with eitherp or
?. The P nodes have con dence value of 1 and thus they are never inckdlin PDS.
The nodes labeled ? have a con dence value of less than 1 andighthe value of
threshold determines whether or not they are included i DS. The identi cation

ofp

nodes is made possible by recognizing thanhy change in the values produced
by such nodes would alter the output values that were knowrbéocorrect Therefore
it is assumed that these nodes must have produced correct was. As the gure
shows, the smallest (largest) pruned dynamic slice that is@duced by our algorithm
corresponds toP DSin (PDShax). The key point to note here is that even if is set
to 1, a pruned dynamic sliceP DS, is obtained, which is smaller than the dynamic
slice DS. Note that PDS,,, is actually what is known as adynamic dice[20] { as
the experiments later in this section show, often when fayitcode is not captured by
the dynamic dice it is captured byP DS -

Next a motivating example will be presented, which shows hoanalysis of code
and runtime information can be used such that the con dencealues of some state-
ment executions inDS,, is determined to be 1. Figure 6.2(a) shows an execution of
a program that follows the path corresponding to the true evaation of the predicate
at node 4. The value shown to the right of each statement is thealue computed
by the statement instance during execution. The dynamic demdence graph of this
execution is shown in Figure 6.2(b) { the solid edges are dateependence edges while
dotted edges are control dependence edges. The nodes in tlgaamnic slice of the
incorrect output value produced by statement 10 includéO; 1; 2; 3; 4; 7; 10g. Now let

us see how the correct outputs produced by statements 8 and @ aised to mark the

122

dynamic

i

5‘ x=x+1‘22‘ ‘ x:x-1‘2o‘11

/ /dynamic

T= Z%V /' control
dependences

Wi
6‘ T=Z%40‘ ‘ T=Z%#20‘12

v
7‘ z=z+1‘11‘ ‘ z=z-2‘2o‘13

1 correct
8| Write X |2 value :
Write T n V4

correct

9 value

10

o iz

incorrect (b) Dynamic Dependence Graph.
value

o ez

(a) Program Execution.

Figure 6.2 . Pruning dynamic slice.

123

P

nodes inDSy,y as™ or ?.

From the correct output value of X written by statement 8 it is inferred that
the values produced by statements 1, 3 and 5 are also corredihe reasoning
on which this inference is based is as follows. The statemsr® and 5 represent
one-to-one mappingdetween the used operand values and generated result
values ofX . Therefore any change in the values produced by statements3lor

5 will cause the value of output at statement 8 to change. Hower, the value

of output at statement 8 is known to be correct. Thus, statens 1, 3 and 5
are marked with P indicating that they produce correct values. It is further
concluded that the true evaluation of predicateX > Y is also correct. This

is because iiX > Y would have evaluated to false, it would have produced a

di erent output value for X at statement 8.

Now let us consider the other correct output value written bystatement 9. Since
statement 6 does not represent a one-to-one mapping betwdaenoperand and
result, even though the value off that is produced by statement 6 is correct,
one can not assume that the value of operand used in statement 6 is correct.
As a result it is concluded that values produced by statemesitO and 2 may or
may not be correct and therefore they are marked with a ?. Notthat value

of Y generated by statement 0 has another use in the predicate>Y . Even

though it has been determined that the predicate correctlyvaluated to true, it

cannot be determined from this fact that the value ofY used by the predicate
is correct because many di erent values of would have produced the correct
true evaluation of the predicate. Thus, from both uses of the same thing can
be concluded, i.e. the value of produced by statement O may or may not be

correct.

Given the above observations, the pruned dynamic slice ofcorrect value output at

statement 10 will always include statements 7 and 10. More portantly it will never

124

include statements 1, 3, 4 and 5. However, it may or may not ihale statements
0 and 2. The con dence values for statements 0 and 2 will be cpared with the

threshold to make this determination. In other words:

DS =10;1,2,3;4;7,10g; IDS =12;7;10g9

PDSmax = 10;2;7,10g; PDSnin = f7;109

In the remainder of this chapter a con dence estimation metbd will be discussed,

which will produce the following results. First for the aboe example it will produce
a con dence value of 1 for values produced by statements 1,8, and 5. Therefore
the pruning algorithm will correctly remove statements 1, 3and 4 from the dynamic
slice of the incorrect output value produced by statement 105econd it will produce
con dence values of less than 1 for statements 0 and 2 such tithe con dence value
of statement O is more than con dence value of 2. Thus, depeing upon the value
of , three possible pruned slices will resultf 0; 2; 7; 10g, f2; 7; 10g and f 7; 10g. The
computation of con dence values will be performed using thealue pro les of the

executed statements (i.e., the operand values use and reswllues produced during

statement executions).

6.2 Con dence Analysis

In this section an analysis will be developed, which will seg as the basis for pruning
a conventional dynamic slice. The goal is to develop l@euristic for pruning a dy-
namic slice such that the size of the dynamic slice is signaatly reduced and very
rarely is the erroneous statement mistakenly pruned from ghdynamic slice. In other
words the objective is to signi cantly reduce the size of thalice with minimal loss
in fault location e ectiveness. As mentioned earlier, for &se of presentation, a di er-
ent formulation of dynamic dependence graphs is used in whieach node denotes a
single execution instance and each edge denotes a single@sed dependence. The

de nition is shown as below:

125

De nition 2. The Dynamic Dependence Graph of a program run, DDGN; E),
consists of a set of node®N and set of directed edgegE where: each noden; 2

N corresponds toi" execution instance of statement in the program; and each
edgem; ! n; 2 E corresponds to a dynamic data dependence or dynamic control
dependence of" execution instance of statemenh on the | execution instance of

statementm.

In other words, with the execution of each statement during program run, a new
node is added to the dynamic data dependence graph and incogriedges to the node

from other nodes on which the new node is data and control depent are introduced.

The execution of every statement during a program run reswdtin the computation
of a result value. For an assignment statement this is the va¢ assigned to the left
hand side variable during the execution while for a predicatstatement the value is
either true or false corresponding to the result of predicats evaluation. The dynamic

slice of a value computed by a statement is de ned as follows.

De nition 3. Given DDG(N; E), a dynamic dependence graph, tH&ynamic Slice
of nj 2 N denoted by D§;) is the subgraph of DD@N; E) which includesn; as well
as all other nodes and edges from whidh is reachable, i.e.
DS(ni) = (fnig;fegge=m; ! n; 2 EQ) | [DS(m;)
8m;! n;

Consider a failed program run from which two kinds of evidemcare collected:
negative evidencén form of the rst incorrect value , observed by the programmer
during the program run; and positive evidencan form of some correct output values
(p ,S) generated during the program run before the incorrect va¢ , was generated.
Each relevantvalue, i.e. value that was involved directly or indirectly h computing

P

o and/or = | values, is classi ed into three distinct categories as deed below.

126

De nition 4. A relevant valuev generated by noda is classi ed as:

P or correct if it is used in computing at least one of thg , values but it is not

used in computing the incorrect value ,. Therefore the values computed by all
nodes in

S
5 DS(IO o) DS(,) are classied asp :

oS

or incorrect if it is used in computing the incorrect value , but it is not used
in computing any of theIO , values. Therefore the values computed by all nodes
in

S
DS(o)) DS(p ,) are classied as ; and
%s
? or unknown if it is used in computing the incorrect value , and at least
one of thep ., values. Therefore the values computed by all nodesDS(,) \

S
; DS(IO) are classied as?.
0

05

As shown by earlier studies, dynamic slic®S(,) typically contains the erro-
neous code responsible for producing the incorrect valug; however, it also includes
many statement executions that are not responsible for gera¢ing the incorrect value.
According to the above de nitions, statement executions ilDS(,) will be initially
classi ed into two categories { some will be classi ed as while others will be classi-
ed as ?. The ones that are classi ed as are always included in the dynamic slice.
However, the analysis is performed to determine what subset statement executions
classi ed as ? should be included in the pruned dynamic slice

The decision as to whether the statement executions in the dgmic slice that
are classied as ? should be included in the pruned dynamicicg is based upon
con dence analysis For every valuev computed by statement executiom, con dence
analysis produces a con dence estimat€(v@n) that measures the likelihood of the

value being correct. The con dence estimat€C(v@n) ranges from 0 to 1 where

C(v@n) = 0 indicates that one has no con dence at all in the correctess of value

127

v while C(v@n) = 1 indicates that one has the highest possible con dence ithe

correctness of valuev@n. This estimate is de ned as shown below.

De nition 5. Con dence estimate of values computed by a relevant node is de ned

as follows:

if v is classied asp (i.e., correct) then
C(v@n)=1

elseifv is classied as (i.e., incorrect) then
C(v@n)=0

elseifv is classi ed as? (i.e., unknown) then

C(V@) =1 IOgjRange(v@n)jjAlt (V@)J

whereRanggv@n) represents all legal values efand Alt (v@n) Ranggv@n)
is a set of alternate values of such that if any value inAlt (v@n) was produced

by n, the same correct” , values would have resulted.

Let us discuss the reasoning behind thé (v@n) computation whenv is classi ed
as ?. If any change whatsoever in the value computed bywould cause at least one
of the P o, values to change and hence become incorrect, then it is carzd that
the value v computed by n during the program run must have been correct. In this
case the setAlt (v@n) contains only one value. Therefore as desired, the con des
estimate C(v@) =1 loGrange(van)j1 = 1. On the other hand, if changingv to
other values can still yield the samd’ , values, then we have less con dence in the
correctness of valuer. As the setAlt (v@n) increases in size, the con dence estimate
C(v@n) reduces and whenrAlt (v@n) is equal to Ranggv@n), then C(v@n) = 1

l0G Range(van)jAlt (v@n)j = 0.

128

Before settling on the above de nition of con dence, other impler de nitions
of con dence were also considered but they were found not bearly as e ective.
For example, a de nition has been considered in which eachlua's con dence was
proportional to the number of correct outputs whose computéion depended upon
that the value. However, it was observed that in many cases drent outputs were
derived from di erent values and thus many values were assigd the same con dence.
In addition, this simpler method fails to exploit the knowlelge that sometimes even
though a value may be involved in computing a single correctutput, by looking at
the statements involved it may be possible to de nitely detemine that the value is
correct. For example, in Figure 6.2(b), since the value of output by statement 8 is
correct, it can be determined that the value oiX computed by statement 1 must be
correct. This is because the statements along the data demkmce chain (4 and 5)
perform one-to-one mapping between old and new values>f

Next an algorithm is developed for computing con dence estiates. While othe
de nition of con dence estimates is quite simple, computabn of con dence estimates
is made challenging by the need for deriving thRanggv@n) and Alt (v@n) sets for all
nodesn that are classi ed as ?. There are two key problems that mustébaddressed.
First, given a variablex referenced by a program statemerg, the setRanggv@n) is
rst de ned, which is the set of legal valueghat x may be allowed to take during its
reference by an execution of. Once such a legal set of values is determined for all
variable references, thélt () sets will be computed with respect to these legal values.
Second, an algorithm must be developed for propagation ofluas. Starting from the
values classi ed asp , the dynamic dependence graph is traversed in a bottom up
fashion to compute theAlt () sets of values classi ed as ?. Thélt() set of a value
classi ed asp is initialized to the singleton set containing the value whe the Alt ()
set of a value classi ed as ? is computed by examining th#dt () sets of its child nodes
in the dynamic dependence graph.

Let us rst discuss how the set oflegal valuesis determined for each variable

129

> i;((:)" [Reference| Value Prole |
Gl y=y+p | Y@ [f123456788 |
Y@ac! 7,89
if (..) X @act £8,9,1Qy

2
CZ X=yw2 |Y@ 11239
X @ £1,0,1,1g
) Z@c® | 19,955
iy Y@cs? £4,5,6,9
3. —_
CUX=Y+Z I xw@c® | 113141114

Figure 6.3 . Value pro les.
reference. A simple approach would be to use all possible wed a variable can

take based upon its type (integer, char, boolean) or compute@ more accurate set
using static analysis (e.g., range propagation [14]). Hower, such an overestimate is
not very desirable for debugging because during debuggingpgrammers are usually
dealing with a single program execution (i.e. the failed rgrcorresponding to a speci c
program input. Therefore thevalue pro le for the failed run is used to supply the set

of legal valuesRang«).

De nition 6. Given a reference (de nition or use) to a variablev in a program
statements, the value prole V P(v@s) provides an ordered list of values taken by

variable v during the multiple executions o8 in the failed run.

Essentially, V P(v@s) is equivalent to the vals stream of the dynamic
label sequence [<tg;vals >] of node s. A program run generates a large number
of values and exercises a large number of dynamic dependsnceéCapturing this
history to perform dynamic slicing is a challenge already adessed by the techniques
introduced in the previous chapters.

Now lets consider the rules of propagation along data and dool dependence
edges in the dynamic dependence graph. Intuitively, givemaexecution instance of
a statement, the values in theAlt () set of the result computed by the statement are

constrained by each of its children in the dynamic data depeéence graph. Only

130

those values can be put into theAlt () set that do not adversely impact any of the
P , Values along any chain of dependence edges from the execugdement to any

of the P , values. Therefore Alt () sets are also associated with dynamic dependence
edges and then theAlt () set for result value of an executed statement is simply
computed by intersecting theAlt () sets of edges leaving the statement. There are
two key operations involved in propagation. First fromAlt () set of a result computed
by an executed statement, the subset of legal values that thegperands can take is
computed such that these operand values produce result vakicontained in theAlt ()
set. Second theAlt () set of a result is computed by examining the subset of legal

values already determined at each of the uses of the resuliwa.

Al(Y@Sg = {9}

c;J
V

(Write X) 10 Vo

(Write X) 14 Vo
Figure 6.4 . Dependences among assignment statements.

Let us consider propagation along dynamic data dependenceges that connect
assignment statements (we will also consider predicate tments shortly). We illus-
trate propagation by analyzing the result value computed bp" execution instance
of statementS in the example from Figure 6.3. The value o¥ computed by Sq is 9
and this value is used later by the 3 instance of statementC?, the 4" instance of
statement C?, and the 4" instance of statementC3. The dynamic dependence will
therefore include three data dependence edg8s! Ci, Sy! C2,Sy! C3. We
further assume that the values oX computed by C1, C and C? are output and de-
termined to be correct. Figure 6.4 rst shows how the potendl values inAlt (Y @5)

set are identi ed by considering each dynamic data dependes individually. Given

131

that C! represents aone-to-one mappingetween the value operand and result X
(determined from value pro les), theAlt () set assignment ofY at Sg constrained by
Ci, denoted byAlt(Y@8, ! C3), contains 9. In contrast, since statement€? and
C? do not representone-to-one mappingbetween the value of operand and the
value of result X, the setsAlt(Y@8s ! C2) and Alt(Y@5, ! C3) corresponding
to dynamic data dependence edgeS; ! C2 and Sy ! CJ contain more than one
value. However, theAlt (Y @5y) is computed by intersecting the three sets for the
three dynamic data dependences yielding a set with only onkement. Therefore the
con dence estimateC(Y @8,) = 1 and therefore the value computed bySy is marked
asp , l.e. correct.

From the above analysis two things can be observed. First,gtpresence of one-to-
one mappings is greatly bene cial in pruning a dynamic slicsince they preventAlt ()
sets from expanding as propagation proceeds. Second, it served that as long as
their is one data dependence edge along which a computed canveri ed (i.e., its
Alt () set contains one value), the value is considered veri edt will be shown later
that the approach is very e ective because programs often of@in many statement
executions that correspond to one-to-one mappings (e.gopy operations, expressions
with two operands one of which is a constant etc.).

In the above example the propagation along dynamic data depa@ence edges is
considered and these edges were present between assignragtement executions.
Next it will be discussed how to handle the situation in whichpredicate evaluations
are present and hence dynamic control dependence edges dse aresent. There
are two points to be made here. First the value of a predicats iclassi ed as being
correct (p) if the value of one of its direct or indirect control dependet assignment
statements has been determined to bpe. This is because if the predicate would have
evaluated di erently the variable assigned by the control dpendent assignment would

Y

have had a di erent value and hence it would have adversely acted on of the" |

values through its further uses. Second it should be noteddhwhen the result value

132

of a predicate is classi ed as correct, it only means that theutcome of the predicate
evaluation (true or false) is correct. However, since a prisadte usually represents a
many-to-onemapping between its operand values and true/false result, cannot be

inferred that the operand values are necessarily correct.h& only thing one can say is
that the operand values are the subset of legal values for whithe predicate produces
the same desired result, i.e. true/false. To illustrate the@bove points a fragment of
the previous example is used as shown in Figure 6.5. The dynardependence graph
and the results of analysis are shown in the gure. Note thatite predicate evaluation

P because its dynamic control dependent chil€} is marked p.

PJ is marked as
Alt(Y@5y ! Pg) also includes values 7 and 8 in addition to 9 as for these léga
values ofY, the predicateY > 6 evaluates to true just as it evaluates to true for the

value 9 produced byS,.

AI(Y@S) = {9}

S:Y=.
Plif (Y >6)
Cl: X=Y+1

(Write X) 10 /o

Figure 6.5 . Dependences involving predicates.

The process described is summarized fully in the algorithmigsented in Figure 6.6.
All nodes in the dynamic dependence graph that have been matkas ? are the ones
that are processed to compute their con dence estimates. €hAlt() sets for all
nodes are initialized to the set containing the valugal() produced by the node. The
nodes marked ? are then processed in a bottom-up order one hyeo If a node
being processed is an assignment statement then tidt () set for its result value

is computed, from which then its con dence estimate is deréd. Predicate nodes

133

are processed by considering the markings on their dynamligacontrol dependent
assignment statements. In Figure 6.6, the functio@ omputeAlt() presents the details

of the Alt () set computations which were described intuitively eardr.

6.3 Experimental Results

Table 6.1 . Characteristics of benchmarks

Benchmark Version Error in Failed | Position
Cases | Range
print _tokens 1 switch-case 6 [14-495]
(565 LOC) 2 switch-case 143 [17-1707]
4 constant 23 [17-1209]
6 constant 143 [13-2714]
7 predicate 28 [8-1271]
print _tokens2 4 assignment 268 [20-394]
(510 LOC) 5 return 67 [20-1106]
6 parameter 329 [20-870]
7 predicate 158 [27-486]
8 predicate 194 [60-928]
replace 1 predicate 24 [2-20]
(563 LOC) 3 predicate 130 [2-666]
6 loop condition 92 [2-609]
9 predicate 92 [2-609]
14 predicate 92 [3-49]
18 predicate 190 [2-380]
21 predicate 2 [18-40]
2-5 25 predicate 2 [3-11]
schedule 2 assignment 200 [2-38]
(412 LOC) 4 predicate 267 [2-39]
7 added code 20 [2-14]
schedule2 5 added code 32 [5-28]
(307 LOC) 6 constant 2 [10-18]
7 predicate 20 [2-16]
gzip 1 predicate 6 [19-19]
(7199 LOC)
ex 4 constant 12 [16885-53109]
(12418 LOC) 5 constant 257 [7130-9056]
7 constant 97 [6164-6164]
10 array index 6 [7142-7144]
11 predicate 513 [6867-43647]
15 constant 515 [13430-53895]
17 constant 315 [10632-51067]
19 constant 343 [20495-61777]

6.3.1 Benchmarks used

Table 6.1 shows the benchmarks used in the experimentatiomhe rst ve are known

as Siemens suite programs [43]. The last two unix utilities@ also available from the

134

Initialize: Alt () f val()g;
for eachrelevant node S; marked ? in bottom-up order do
if S is an assignmentX = :: then
ComputeAlt (Alt (X @5;));
if JAlt (X @5j)j =1 then
C(X@s)=1; mark S; as’ :
else
C(X@5)=1 logRrange(x @s)jiAlt (X @5;)j
endif
elseifS; is a predicate then
if 9§ stS; dynamically coBtroI dependent upon S
and S is marked
thenmark S; as™ endif
endif
endfor

ComputeAlt (Alt (X @5;))
Let the following dynamic_dependence edges lead
from S; to nodes marked™ or ?:

to assignments S;! C%, S ! C3,...S! CI;
to predicates S;i! PL,S! PZ, .S ! PM.

for eachCl : Y = f (X) st 9 S; ! iji do
Alt(X@si! Cfi)=fv: ‘
v2 VP(X@ch)~ Ccl(x = v)2 Alt(v@acl)g
endfor
for eachPl : f (X) st 9§ 1 P} do
Alt(X@si ! P))=fv: _
V2VP(X@)"PI(X =v)= Plg

endfor T _
Alt (X @sj) = CAlt(X@s ! Cj)
8j;si! C}
\ CAlt(X@si! Pl)
8;Si! P
endComputeAlt

Figure 6.6 . Con dence computation algorithm.

135

same website [2]. This suite of programs was used becauserdvides several faulty
versions of the programs which have exactly one fault injesd in them. The versions
used in the experiments are also indicated in Table 6.1. Foaeh faulty version many
test inputs are provided [43]. Dierent inputs result in di erent position for the
rst incorrect output in the output stream. The column position rangeof Table 6.1
gives the range of the position of the rst observed wrong optit. The greater is
the position number, the greater is the number of correct oputs produced before
the incorrect output. One can see that it is common for a certa number of correct
outputs to be generated in a failed run. In fact these numbersan be very high for
some inputs.

The test suite provides more versions than those used in th&periments. some
of the versions were excluded as they are not appropriate fexperimentation. Some
versions produced no output or the very rst output producedwas wrong. Therefore
our approach was not applicable. In two kinds of situationshie faulty statement was
not present in the dynamic slice itself and thus the e ectiveess of pruning could not
be studied in such cases. Firstgode omissionfaults were present in some versions.
Since such faults were not even captured in the static slicé thhe output, they could
not be caught any by any dynamic slicing algorithm. Second; was mentioned earlier
that a dynamic slice does not always include the erroneousesexited statement. This
happens when the erroneous output is produced due to an inpect evaluation of a
branch predicate causing execution of some statements to lmeorrectly bypassed.
This situation can be handled byrelevant slicing[33, 88]. While in our experiments
such cases were omitted, later it will be shown how they can iandled by augment-

ing the technique.

136

6.3.2 Con dence-based Pruning

Since for some faulty versions there are many test inputs, drsome of these may not
di er much in their behavior, for each faulty version three est inputs were selected
such that varying number of correct outputs are generated ba&re the incorrect output
is produced. Whenever possible, three runs were selectedhsthat the wrong output
was observed at: the lower bound gbosition rangein the rst run; closest to the
middle of position rangein the second run; and at the upper bound gbosition range
in the third run. For each run, the dynamic slice of the wrong otput was rst
computed and then the slice was pruned using con dence ansly. Six numbers
are presented about the slice sizes in Tables 6.2 and 6AI:PDS i, , All:PDS nax,
and All:DS represent the number of DDG nodes iP DSy, , PDSnax, and DS.
The correspondingdistinct numbers O:PDS.,n, D:PDSa, and D:DS) denote
the number of unigue statements in them (note that one uniqustatement may get
executed many times and result in many nodes in DDG). We alsagsent the fault
location e ectiveness in columnError In. Herel, X, and D indicate the presence
of erroneous statement inrP DS, , PDSnax, and DS respectively. The results are
also summarized by taking averages across di erent versomof each benchmark in
Table 6.4.

From these tables, the following observations can be made:

1. The con dence analysis greatly reduces the size of dynamslice without sac-
ri cing the fault location e ectiveness. Table 6.4 shows tle average factor by
which PDSax is smaller thanDS ranges from 431 to 8751433 (all) and 179
to 26:93 (distinct). For ex, the slices are so precisely reduced that they simply
contain the chain of dependences from the erroneous statem® the incorrect

output { this chain includes only a few statements.

2. For most of the versions, three runs were used and the retat between the

137

Benchmark Version | Wrong Output Pos. (AIl:PDS min (D:PDS min Error In
-All:PDS max)/ All:DS | D:PDS max)/ D:DS

print _tokens 1 14 (310-310)/712 (41-41)/72 IXD
301 (239-240)/4582 (40-20)/86 XD
495 (317-317)/13603 (41-41)/134 XD
2 17 (70-70)/429 (19-19)/61 XD
231 (68-69)/3605 (18-18)/86 XD
1707 (70-70)/44158 (19-19)/149 XD
4 17 (246-246)/603 (40-20)/69 XD
91 (212-212)/1965 (35-35)/92 XD
1206 (263-295)/28513 (43-43)/141 XD
6 13 (1457-1470)/1804 @4-2871 XD
109 (214-214)/1993 (35-35)/97 XD
2714 (432-432)/66651 (36-36)/145 XD
7 8 (399-400)/698 (41-41)/74 IXD
920 (423-436)/1486 (41-41)/94 IXD
12710 (390-391)/27274 (37-37)/136 IXD
print _tokens2 4 20 (174-174)1902 (40-20)/99 IXD
47 (447-447)[1561 (50-50)/95 XD
394 (770-770)/8364 (44-44)/138 XD
5 20 (499-499)/850 (58-58)/97 XD
79 (364-364)/1013 (59-59)/109 XD
1106 (285-285)/27841 (56-56)/154 XD
6 20 (208-208)/680 (61-61)/95 XD
34 (208-208)/770 (61-61)/97 XD
870 (208-208)/18602 (61-61)/143 XD
7 27 (697-698)/1290 (59-60)/96 XD
75 (329-329)/1140 (53-53)/83 XD
486 (1105-1105)/10630 (67-67)/148 XD
8 60D (377-377)/2091 (59-59)/100 IXD
63 (377-406)/1676 (48-51)/105 XD
928 (367-413)/20738 (48-51)/151 XD
replace 1 2 (192-494)/2212 (38-77)/147 XD
9 (241-461)/1625 (53-81)/130 XD
20 (179-408)/1687 (44-64)128 XD
3 2 (160-671)/1012 (32-86)/136 XD
18 (89-89)/1997 (21-21)/155 XD
666 (17-868)/18522 (3-45)/125 XD
6 2 (371-780)/1166 (45-62)/136 XD
19 (216-648)/2129 (28-50)/132 XD
609 (325-605)/20525 (46-49)/153 XD
9 2 (180-357)/889 (40-61)/115 XD
260 (48-243)/3047 (18-42)/125 D
14 3 (289-656)/1187 (55-88)/138 XD
9 (1006-1689)/2515 (73-117)/161 XD
49 (103-112)/3021 (23-28)/111 XD
18 2 (106-107)/669 (26-27)/109 XD
35 (152-152)/4145 (37-37)/143 XD
380 (194-194)/12588 @7-37)127 XD
21 18 (390-781)/2372 (53-86)/132 XD
40 (502-783)/3501 (42-59)/102 XD
25 3 (321-531)/975 (55-78)/120 XD
11 (450-552)/2952 (72-84)/165 XD

(1). Part of the wrong output appeared to be correct;
(2). The root cause was pruned.

Table 6.2 . Pruning e ectiveness results of faulty versions for up tohree test inputs.

138

Benchmark | Version | Wrong Output Pos. (AIl:PDS min (D:PDS min Error In
-All:PDS max)/ All:DS | D:PDS max)/ D:DS
schedule 2 2 (464-465)/1046 (65-66)/93 IXD
10 (621-623)/2155 (69-69)/118 XD
38 (295-359)/6176 (55-55)/119 XD
4 2 (1225-1468)/2605 (88-98)/119 XD
10 (1025-1029)/2155 (85-89)/117 XD
7 2 (386-399)/726 (67-68)/90 XD
6 (83-284)/1124 (24-65)/105 XD
14 (84-330)/2146 (24-59)/97 XD
schedule2 5 5 (1152-1152)/1823 (64-64)/83 XD
14 (195-195)/2594 (34-34)/73 XD
28 (1896-1896)/5639 (60-60)/79 XD
6 10 (230-230)/1611 (40-20)/67 XD
18 (254-254)12526 (42-42)l67 XD
7 2 (80-145)/696 (27-36)/67 XD
6 (113-129)/2871 (25-27)[94 XD
16 (693-709)/3311 (59-61)/84 XD
gzip 1 19 (82-394520)/1699490 (10-121)/357 XD
ex 4 168851 (13-14)/62235 (7-8)/692 IXD
198251 (16-17)/42823 (9-9)/648 IXD
531097 (13-14)/1120244 (7-8)/889 IXD
5 7130 (17-76)23292 (6-18)/542 XD
8925 (4-2)/81991 (3-3)/681 XD
9056 (4-24)/59501 (3-3)/709 XD
7 6164 (17949-18026)/22886 (217-229)/280 XD
10 7142 (76-86)/84210 (19-23)/730 XD
8925(T) (74-75)/1021249 (17-18)/786 IXD
11 6867 (15-15)/5756 (10-10)/81 XD
16092 (15-15)/39484 (10-10)/552 XD
43647 (15-15)/254532 (10-10)/720 XD
15 134300 (71-71)/30002 (14-14)/824 IXD
160921 (71-71)/72756 (14-14)/988 IXD
538590 (96-96)/1120987 (19-19)/941 IXD
17 10632 (1-1)/22093 (1-1)/632 XD
11584 (1-1)/86515 (I-1)/813 XD
51067 (1-1)/1118733 (1-1)/864 XD
19 204951 (35-54)/32219 (16-20)/764 IXD
219550 (35-35)/98133 (16-16)/947 IXD
617770 (32-33)/1130822 (15-16)/981 IXD

(1). Part of the wrong output appeared to be correct;

Table 6.3 . Pruning e ectiveness results of faulty versions for up tohree test inputs.

139

Benchmark (Al:PDS min AILPDS max)/ | (D:PDS min D:PDS max) All.DS / D:DS/
All:DS D:DS All:PDS max D:PDS max

print _tokens (341-345)/1320 (35-35)/100 734 3.12
print _tokens2 (428-433)/6543 (55-55)/114 19.53 2.09
replace (310-546)/4112 (43-60)/131 13.14 2.52
schedule (454-596)/3188 (56-70)/117 9.41 1.79
schedule2 (562-630)/2358 (50-58)90 6.58 1.69
9zip (82-394520)/1699490 (10-121)/357 431 2.95

ex (1232-1240)/342692 (25-27)727 276.36 26.93

Benchmark All:PDS max =All:PDS min D:PDS max =D:P DS min
X] X X] X

print _tokens 1.01 NA 1 NA
print _tokens2 | 1.01 NA 1.01 NA
replace 1.78 8.55 1.38 3.36
schedule 1.08 3.68 1.03 2.58
schedule2 1.54 NA 1.29 NA
gzip NA 4811.22 NA 12.1
ex 1.05 NA 1.04 NA

Table 6.4 . Summary of results across all versions.

pruning capability and the number of correct outputs was stdied. From Ta-
bles 6.2 and 6.3 it is observed that the absolute sizes of tReDSs appear to
be independent of the number of correct outputs. However, ¢hreductions in
the sizes ofP DSs with respect to the sizes oDSs increase as the number of

correct outputs grow because of the increases in the sizedDd&s.

. Itis observed that the fault location e ectiveness oP DS,,5« is very good. Even
though it is much smaller thanDS, only in one case the erroneous statement is
removed during pruning { this happened inreplaceversion v9 run r2. Figure 6.7
explains how this happened. In this run, statement = i + 1 is wrong such that
'D' is assigned to the wrong position in arraypat. However, statementreturn
ag is veried and thus ag=true; is veried, which means the predicate is
correct. Since the predicate represents a one-to-one mapypito its operand
when it evaluates totrue, pat[j] contains the correct value 'D'. According to
the analysis, the store topat[i] will get veri ed and so will the wrong index.
As is illustrated in the right hand side of Figure 6.7,pat[j] being correct is

the result of both array pat and j being wrong. A plausible solution is not to

140

infer the correctness of from the correctness opat[j]. However, it becomes so

conservative that the e ectiveness of pruning diminishes.

=
w‘\’)%—DQIUX
RS

Figure 6.7 . Replace v9 r2

4. Let us compareP DS 5« with PDS,,, . Although PDS,,, works for a large
number of test cases, it was observed that in several casas;tsasreplace v1,
v3, v9, v2land schedule v/it prunes the erroneous statement whild®> DS, .«
does not do so. On the other hand? DSax Works almost equally well for the
cases in whichP DS,,;; also works. As shown in Table 6.4, when the erroneous
statement is captured in bothP DS,,,x and PDS,,, , corresponding to thel X
columns,PDS,,ax=P DS, is roughly one, i.e. their sizes are nearly the same
(the entries marked NA are ones where there were no slices rat category).
Thus, using con dence analysis to obtairP DS,.x iS an e ective method for

both pruning the slice and maintaining the fault location e ectiveness.

5. In some cases such asx v15, part of the wrong output appears to be correct
which may cause some confusion. For examplex v15 has the error ofprintf
("YY _USERACTION") missing a hn' at the end of the string. If we assume
the "YY _USER ACTION" is correct, the wrong printf will get veri ed. To solve
this problem, the output is divided into units, which is lines in this case, and

compute slice on the rst character of the wrong unit.

141

6.3.3 Enhancements to Pruning

With the help of a programmer. It is possible that PDS,,,« is still quite big.
However, pruning can be further carried out during debuggm During the course of
debugging the programmer usually investigates the values gdband decides if they
are correct or wrong. This information can be fed back to theom dence analysis
to enable further pruning. Similarly, the programmer can ao look at the slice and
tell the system if certain values seem to be correct. An experent was conducted
trying to simulate this procedure. Replaceversion v14 was picked, one of whose
three prunings (the third run) was quite successful and theefation from the error
to the wrong output could be understood. The largest prunedise in the third run,
PDS2,,, was used as a reference to examine tReDS},, of the rst run. The rst
statement instance which was irP DS}, but notin PDS2_, was found and marked
as correct by the system.PDS}_, was further pruned to 587/74 @ll/ distinct) from
656/88. After another two interactions, it was reduced to 923, which was very
close to dependence chain along which error was propagatéthe same experiment
was also tried withreplace v3{ the second run was used as a reference to prune the

rst run and it was found that in only one step, the slice was rduced from 671/86

(all/ distinct) to 33/15 and it still contained the error.

Schedule V7 R2

1
Error contained
\
06 |
04 04
02 02
——— ——— L 0 .
1 09 08 07 05 04 03 02 01 O 1 0.9 02 o1 o 1 0.9

Confidence Confidence Confidence

Replace VIR3 o mi s pisinct Replace V21R2 —eal -s-Distinct

|«————— Error contained ——»]
1
0.8 \

0.6 \
L

Normalized PDS Size
Normalized PDS Size
Normalized PDS Size

0.4

0.2

Figure 6.8 . Pruned dynamic slice for varying threshold (version Vi rurRj).

Looking for a threshold. So far either PDS,,, or PDS,,ax were discussed.
In this experiment, the relationship between the threshold and the correspond-

ing PDS 's size and its fault location e ectiveness is studied. Theesults for three

142

di erent runs are plotted in Fig. 6.8. As expected, thePDS drops in both size
and fault location e ectiveness as decreases. However, the existence of such a

that nicely balances between the size and fault location ectiveness was not observed.

Print_tokens Print_tokens2

cv b ——CV —#-DD
120 12
100 1
g w0 Los /—/
E g / /
$ 60 8 06
s g
2 2
3 w0 S 04
‘f _// E
20 0.2
0 0
0-5 5-10 10-15 1520 2025 2530 05 510 1015 1520 20-25 25-30 30-35 3540 40-45 4550
Executed statements examined (%) Fxecuted statements examined ()
Replace Schedule
——CV —=-DD ——Cv —=—DD
120 12
100 1
g 80+ SR
=
E g
2 604 £ 06
: :
®
S 40 S 04
& &
204 02
0 [
0-5 510 10-15 1520 20-25 2530 30-35 3540 40-45 4550 50-55 0-5 510 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55
Executed statements examined (%) Executed statements examined (%)
Schedule2 Flex
——Cv —=-DD o P
12 12
1 1 /
Los £ os
3 3
g g
8
8 06 806
5 :
E S 04
z 0.4 g
02
02
0
0 0.00- 0.50- 1.00- 1.50- 2.00- 2.50- 3.00- 3.50- 4.00- 4.50- 5.00- 5.50- 6.00-
05 510 1015 1520 2025 2530 050 1.00 1.50 200 250 3.00 350 4.00 450 500 550 6.00 6.50

Executed statements examined (%)
Executed statements examined (%) 9

Figure 6.9 . Locating fault by examining statements in increasing ordeof con dence
values.

Prioritization based on con dence. As mentioned earlier, it was observed
that the most e ective pruning strategy is one in which only he statements with
con dence values of 1 are pruned from the dynamic slice to ptace P DS . Next

an additional use of con dence values is studied. The statents in PDS,,., are

143

prioritized in the order of increasing con dence values. To locate fayltcode, the
statements are then examined by the programmer in the ordeff ancreasing con -
dence values till the faulty code is encountered. The e esteness of this strategy is
measured in terms of the percentage of executed statementat are examined by
the programmer before encountering the faulty code.

In prior work it was shown that an e ective strategy for explaing dynamic slices to
locate the faulty code is to examine the statements in the dymic slice in increasing
order of their dependence distance from the point at which #herroneous value is
encountered during a failed run [88, 84]. An experiment wa®wrducted in which the
e ectiveness of two strategies were compared: exploring rymic slice in order of
increasingdependence distance®D); and exploring pruned dynamic sliceP DS ax
in the order of increasingcon dence values(CV). When using the con dence value
based strategy, if two statements with same con dence valugre present, then the
dependence distance is used as the tie-breaker.

The results of this experiment are given in Figure 6.9. For aigen point in each
graph, the y-axis represents the fraction of faults locatedhile the x-axis represents
the percentage of executed statements examined to locateeie faults. The results are
the averages over the three failed runs that were used in th&periments presented
in the preceding section. As one can observe, for a given pentage of executed
statements examined, typically the fraction of faults thatare located is higher for

CV in comparison toDD .

6.4 Summary

In this chapter, a novel approach for pruning dynamic slicessing positive evidence
was introduced, which exploits program state informationn terms of observed values
of variables in addition to the dynamic dependence informattn as is done tradition-

ally in dynamic slicing. A simple analysis was developed tcst#mate a con dence

144

value for any computed value. Due to a fairly large number ofxecuted statements
that represent one-to-one mappings between an operand arftetresult, the highest
con dence value of one is obtained for a large number of contpd values. As a
result, even the largest pruned dynamic slice computed iggsi cantly smaller than
the conventional dynamic slice. The number of distinct staments inP DSy« IS
1.79 to 26.93 times less than the corresponding number @5. Con dence analysis
was not evaluated on the real bugs introduced earlier becausmost of those faulty
programs do not produce any correct output. Therefore, eveiough it is strongly
believed by the author that it is very common for a failing runto produce partially
correct output in real life, further empirical studies shold be carried out in future.
More importantly, if both negative and positive evidencesra collected in one single
failing run, further reduction on the fault candidate set ca be achieved. In the next
chapter, it will be shown how even longer program runs can bewhdled by identifying

relevant intervals of execution and then limiting slicing aly to these intervals.

145

Chapter 7

Dynamic Slicing of Long Running
Programs

The optimization and compression techniques discussed iarker chapters achieve
the space e ciency of 4 bits per instruction. A simple task asstarting Mozilla and
browsing a html page may create traces with the size of a fewggi bytes. In other
words, tracing based techniques, such as dynamic slicingnchandle executions up to
a few seconds given the speed and storage capacity of todayskstations. Realistic
executions with the lengths of minutes, hours, or days seerm be far beyond the
capability of dynamic slicing given all the advances. Thishapter discusses a plausible

solution.

7.1 Overview

While a naive solution is to divide the entire execution by abckpoints, and then apply
dynamic slicing enabled by tracing on one checkpoint inteaV at a time. However,
this solution is not as simple as it appears for two reasons.ir§t, tracing requires in-
strumenting the original program. There are two kinds of insumentation techniques
{ static and dynamic. Static instrumentation, in which the program is instrumented
by compilers, introduces non-trivial execution overheadsatracing cannot be easily
turned o. Dynamic instrumentation adaptively instruments the program. It can
easily switch from executing the original code to executinthe instrumented code or
vice versa. Dynamic instrumentation engine usually residen the process's virtual
space and manipulates the virtual memory intensively suchhat the status of the

application process is substantially mixed with the instrmentation engine's status.

146

While checkpoints are often produced by taking snapshots tfe virtual memory, it
becomes hard to discretely checkpoint the application press. Second, tracing can
handle executions up to a few seconds. In contrast, checkping usually produces
virtual memory snapshots with the size of a few mega bytes, ig not something that
can be easily a orded to perform every second. Checkpointseausually created in
the interval of, more or less, minutes. The gap between secsnand minutes suggests

that it is still too costly to trace a checkpoint interval.

—=C

\ 4

Figure 7.1 . Execution fast forwarding.

Figure 7.1 gives an overview of the idea. The left part illusates that an execution,
or part of an execution delimited by checkpoints, is usuallpeavily instrumented for
the purpose of dependence tracing. The heavy instrumentah introduces very high
runtime overhead and constructs a huge dependence graph,efihmakes it impractical
if the execution gets long. In the right part anexecution fast forwardingtechnique
takes advantage of the characteristics of many long runningrograms { being driven
by events. More precisely, it rst collects a full event logrom the original execution;
given a speci c part of the execution that the programmer was to replay, a meta
slicing technique, which is analogous to dynamic slicing byerformed on logged
events instead of executed instructions, is applied to prenthe events irrelevant to
replaying the desired execution region. The reduced evemgl is used to drive the

replay. Compared to the original run, thefast forwardedexecution is much smaller

147

as the volume of events passed to the program is much lower. Agesult, a smaller

dependence graph is generated that can be collected througacing.

7.2 Execution Fast Forwarding

Often when a program runs for a long time it is not because it prms a very
long and complicated task. Instead, it is often because theqgram processes a long
sequence of simple tasks. For example, programs processstrgaming data such
as audio, video, and packet data usually carry out the same roputation e.g. FFT
transformation on a sequence of data; the computation on dadata piece tends to be
relatively lightweight and independent from each other. Rygrams that require user
interactions display similar properties: the programs spwl most of their execution
time in handling user actions and the computation dedicatedor each user action
is usually simple. Server programs deal with thousands ofgeests, most of which
set 0 simple computations such as reading a le or retrievig a piece of data from a
database. A common feature of these programs is thiitey are driven by eventsThe
events divide the whole execution into small tasks, each oonéwhich corresponds to
handling some event. An event is de ned as one interaction tvgeen the application
and the OS. The interaction could be in the forms of: system ks such asopen, read
and mmap2 asynchronous or synchronous signals such ki and segfault These
events are used to provide OS services, for instance readwmgting a le/socket, to
the application program, or to notify something has happerke

An execution fast forwarding(EFF) technique is derived from the following ob-
servation { all the events do not need to be replayed in order to replay atmailar
part of the execution Given the fact that the execution is driven by events, we may
be able to shrink the replayed execution, and yet reproducée desired part, if the
irrelevant events can be pruned.

Figure 7.2 presents a motivation example. In the original my the key 'c' was

148

0 *$+ » 10 TS

-

%

#
JS$t+ %/
$ — 0% "l ' +2 3/
-8+
%
& _ - 1S+ 8
— 0% " 1# $3/
($" +1#3$ $ 4

Figure 7.2 . Getting the same warning message by replaying the reducealyl for
Mutt 1.4.2.1i. The numbers mean the byte positions of the cogsponding events in
the log.

rst pressed in order to change the folder name after Mutt, adxt based mail user
agent, was started; string Tmaps://xyz- hang@email.cs.arizona.edu/inbdXwas typed
in as the email account, which was followed by the passwordfter logging in the
account, a couple of email messages were accessed; tikewas typed again and
string "Hello" was provided as the new folder name. SinceHello" was not a valid
folder name, a warning message was printed on the screen. Téwents were logged
in a le as shown on the left hand side of the gure. The rst a fev thousands of

events present the startup phase of the execution, which isamly about loading

149

dynamic libraries, allocating virtual memory, and initializing the program state. The
shaded events starting from byte position 4898 to position98803 correspond to
the execution related to accessing the email account. Evenstarting from 594804
contribute to entering the invalid folder name and the warmg message was printed
by the event at 595007. Let us assume the programmer is inteted in reproducing
the warning message. Apparently, replaying the entire exetoon with the full log is
an option but not the optimal one. For the event at 595007 to beorrectly replayed,
we need to replay events at 594804, 594825, ..., 594890, divents from 4898 to
594803 are actuallyirrelevant to replaying the event at 595007. We constructed a
new log by removing all the irrelevant events and then droveht replay with the
reduced log. The same warning message was successfullyagpced. The execution
was actually fast forwardedto the desired point by skipping the irrelevant part.

The EFF technique poses two challenges. The rst one is how tdentify and
remove the irrelevant events; the second one is how to replagth the reduced event

log. The following subsections describe how we handle thassues.

7.3 Event Dependence Graph

In dynamic slicing, given a value that is observed to be incagct by the programmer
(incorrect value may correspond to an incorrect output or aalue that causes the
program to crash). A set of executed statements that contrided to the value of
the speci ed variable are computed as its dynamic slice. Thexecuted statements
not in the dynamic slice are not relevant to the investigatedsalue. An analogous
solution can be applied on the executed events to identify ¢hset of irrelevant events
for replaying a given execution region.
As an event usually corresponds to multiple executed statamts, it is important to

understand how we deal with events during the constructionfa DDG. Since an event

is usually handled inside the OS kernel, a tracing engine vehi runs in the application

150

space is not able to trace into the kernel. Hence the dependes within the event
handler are not captured. The solution is to summarize the exution of an event
into an abstraction, E; (U; D), according to the speci cations of events. For instance,
event "n=read(fd, Buf, size)" can be abstracted as "...U = f fd, seekpointer(fd),
size, Bufg, D = f seekpointer(fd), Buf[0], Buf{1], ... Buf[n-1] g. Note that only the
rst n elements ofBuf are de ned according to the speci cation of eventead. This
event both de nes and uses the seek pointer of |&.

An event dependence graplDG), can be constructed to reveal the dependences

within events, which can be later on used to prune the irrelewmt events.

De nition 7. The Event Dependence Graph of a program run, EDGN;E),
consists of a set of nodeBl and a set of directed edgels where: each noda; 2 N
corresponds to the™ execution instance of evenh in the program; and each edge
m; ! n; 2 E denotes that there exists a dependence path frem to n;, and there

are no other executed events tham; and n; on the path.

=

Figure 7.3 . An example of dynamic dependence graph (DDG) and event depence
graph (EDG).

Figure 7.3 presents an example to illustrate a DDG and the c@sponding EDG.
The left hand side presents the DDG for the execution of a smabiece of code.
Statement executions 2and 4; data depend on 1 because they use the le descriptor
de ned at 1,. 4, data depends on 2 because 2 changes the le seek pointer. The

graph on the right hand side shows the EDG. Event executioB 3; depends onE 2,

151

because of the dependence path 2 4,. Event executionE4, depends onE2; due
to the dependence path 2! 3;! 5;! 6,. Note that the read eventsE2 and E3
are considered as di erent events because they occur at dient program locations.

Control dependence between statements can also lead to degence between
events as demonstrated by another example in Figure 7.4, wheevent E 3; depends
on eventE2; as the result of 3Q control depending on 21 and 21 data depending
on 20. The dependence betweek 2, and E 3, belongs to control dependence as the
execution ofE 3; is due to the result ofE 2,. However, in EDGs data dependence and
control dependence edges are not distinguished.

Precisely constructing the EDG requires accurately tracmpeach dependence (data,
control, and potential). According to the previous experiece, exactly tracing data
and control dependences on the y results in a slow down of up ttwo orders of
magnitude. Thus, building precise EDG is a luxury that becoms worthy only when
the cost can be amortized by a large number of replays. Othesg, programmers
would rather replay the entire log, which is equivalent to dabling the execution time,
than endure the two orders of magnitude slow down in the rst face and attain speed
up in just a few replays later on. To address this issue, we t@to be conservative
by constructing an approximate EDG, in which one event depeis on the other if
and only if they are related by astatic dependence path. In other words, only a
static dependence graph is demanded, instead of a dynamicepmogether with the
event log to build the approximate EDG. The only runtime ovehead paid is for event
logging, which is signi cantly cheaper than tracing each dgeendence. Because the
dependences between events are usually much simpler thae thependences between
normal statements, which can be highly complicated due to puer aliasing, being
conservative in EDG construction introduces much less impcision compared to being

conservative in building DDG.

152

7.3.1 Meta Slicing on Event Log

Similar to dynamic slicing, given an EDG and an event, whichhte programmer wants
to reproduce, meta slicing on the EDG computes the set of evsrithat are needed in

order to replay the given event.

De nition 8. Given EDG(N; E), an event dependence graph, thdeta Slice of
e 2 N denoted by M$&e) is the subgraph of ED@N; E) which includese as well as
all other nodes and edges from whiah is reachable, i.e.
MS(e)=(fegfee=m; ! & 2 EQ)| [MS (m;)
8m;! e

For example in Figure 7.3, MSE4,) = fE1;;E2;;E4,9. Note that we ignore
the edges in MS for simplicity. We need to replay 1;, which opens the le, and
E2;, which reads some data from the le, in order to correctly relay E4,, which
prints some value resulted from the computation over the ing data. In Figure 7.4,
MS(E3,) = fE1;; E2;; E3,0. E2; has to be replayed otherwise the control would not

ow to ES3;.

]
L]
L]

Figure 7.4 . Another example of event dependence graph.

So far, how to nd the set of relevant events in order to replay given event has
been discussed. However, in reality it could be a speci ¢ exged statementn; that
the programmer wants to replay. In this case, the set of clasteevents reachable from

n; in the DDG, denoted as ECut(;), need to be identi ed and then the meta slices

153

need to be computed on these events. For example in Figure,7/&€Cut(40,) = f 20,9,
the corresponding meta slice MS(20 = f10;;20,9. Intuitively, both E1; and E2;

need to be replayed in order to replay statemer1.

7.4 Replaying with A Reduced Event Log

It has been described how meta slicing can be applied to idégtthe set of events
in the log that are relevant to replaying given part of the exeution. However, meta
slicing is not yet the ultimate solution. It is often the casethat a meta slice can
not be used directly to drive the replayed execution. For exaple, in Figure 7.3,
MS(E4,) = fE1;;E2;;E4,0. Replaying with the meta slice fails becausg& 3; was
expected when the control ows to statement 4 This suggests that some events, even
though irrelevant to replaying the desired part of the exedion, cannot be pruned
due to the control ow structure. Next, it will be explained how an event log is

reduced with regard to the meta slice and the intrinsic contl ow structure of the

application.
05 6
(C(®
IO"H$% s
T
I &#H %
(3% ENICIE
. ENICIE
.)+) - %
*/ 10 #$% El 10 4

1
1
1

Figure 7.5 . An example on reducing the event log. The shaded events afese in
MS(94,).

154

Before presenting the algorithm, let us rst study an examp that clearly explains
how it is made possible to reduce a log without losing the vdity. In Figure 7.5, the
program displayed in the left column takes user commands frostdin. Di erent
actions are taken based on di erent commands. For instancejessages are printed
on the screen if &/' ¢ is pressed; a le is opened ifd is pressed; the opened le
is read if ' is read; if the data read does not match the size required, agrror
message is delivered. The event log for a particular exeauti is presented in the
right column. During the execution, a le is opened and thenead for twice; the
second read does not satisfy the size wanted such that an ernoessage is printed at
94,; in between of these events, a number of events happen as tesuits of a/' ¢
being pressed. Let us assume 9% the event we want to replay. MS(94) is denoted
as the shaded events in the log. Apparently, the meta slicen®t legitimate for replay
as event 5(gettimeofday, which is not in the meta slice, is expected at the beginning
of the replayed execution. While 5 is not removable, events 20and 31 can be
removed without any problem. The important observation hez is that 20, and 20
are compatibleand thus 2@ can be moved up to replace 20such that the event in

between, 31, is pruned.

De nition 9. An event executiong is compatible with another event executiog i

their calling contexts are identical and they occur at the sg program point.

All the events 2Q in Figure 7.5 are compatible to each other. This example
suggests we are able to alter the replayed execution by reglag an event with its
compatible peer. The algorithm to reduce a log given the me#dice is presented as fol-
lows. Getnext_event() gets the next event from the log le; getnext_marked.event()
gets the next event belongs to the meta slice, which we assumeprecomputed, in
the log le. These two methods share the same le seek pointewhich can be set by

set_le _pointer(...).

155

Input: the original log Log
Output: the reducedlog RLog
Initialize: RLog
while (en=get_next_marked_event(Log))!=EOF do
e=get _next_event(Log)
for eache, from eto ey in Log do
if e:context ey :context then

goto L1
endif
Rlog Rlog e
endfor
L1'

Rlog Rlog en
set_le _pointer(Log, en)
endwhile

The basic idea of the algorithm is that given a marked everg,,, an event in the
meta slice, the earliest compatible ever, is found in betweene and e,, s.t. moving
en up to replacee, maximizes the savings. All the events betweemand g including
e are copied to the new log to satisfy the control ow structurecon nement. The
events betweere, and e, are discarded.

Table 7.1 presents the reduction procedure of the examplekigure 7.5. As shown
in the table, during iteration one, 5 is the rst event retrieved from the log, and 2Q
is the rst marked event. 20, can be moved up to replace 20such that 5, and 2Q are
the two events appended to the new log. During the second itgion, 80, is the next
event and also the next marked event such that it is simply cogd to the new log. In
iteration three, moving 2@ up to replace 2@ results in cutting the events from 2@
to 50,. The nal reduced log is shown in the last row of the table. Theeduce log

can be used to drive the replayed execution to reproduce the@ message at 94

7.5 Experimental Results

A few issues need to be address in order to carry out the evatiasm. The rst issue

is that what benchmarks should be used. The selected prograrahould be able to

156

Table 7.1 . Computation table for gure 7.5.

lteration | e en | RLog

1 5 |20 | 5 20,

80, | 80; | 51 20, 80,

203 | 205 | 51 20, 80y 205

91 | 91; | 51 20, 80, 205 914

205 | 203 | 51 20, 80y 205 915 20

91, | 91, | 51 20, 80; 205 91; 203 91,

931 | 94, | 51 20, 80; 205 91; 203 91, 93; 94,

N(O|O Bl WN

run for a long time. We looked at the set of bugs studied in [5%7, 65] and picked
the programs that can execute for a long time. Table 7.2 pra#s the set of selected
programs. Most of them are user interactive programs. The s&nd issue is how
to obtain the input that can drive the execution for a long time and then crash the
execution. On the other hand, the execution should not be sorig that it becomes too
heavy a task to collect the data. Unfortunately, the input coning with the selected
bugs usually leads to very short executions. Given the fadhat most benchmarks are
interactive, a long input was constructed by rst performirg a lot of user actions and
then apply the failure inducing input {the input comes with the benchmarks. For
example inmutt, the following actions were taken: (i) opening an email acaat; (ii)
going through all the emails one by one, the total is about sikundreds; (iii) trying
to switch to an invalid folder; repeating steps (ii) and (ii) two more times; providing
the failure inducing input and crashing the program. The usetime was collected
as the performance indicator since the real time may signiantly di er each time
depending on the user's behavior.

Four execution scenarios were investigatedirig. denotes the original execution;
traced denotes the original execution plus the dependence tracingggedrepresents
the original execution plus loggingEFF represents the fast forwarded execution plus

the dependence tracing. In the logged run, an event log is ated. The EFF technique

157

Table 7.2 . Description of the benchmarks

| Benchmark | Description | LOC | Bug Type |
bc-1.06 interactive calculator 14.4K | heap over ow
mc-4.5.55 le manager 86.2K | stack over ow
mutt-1.4.2.1i email client 453.6K | heap over ow
pine-4.44 email client 211.9K | stack over ow
pine-4.44 email client 211.9K | heap over ow
squid-2.3 | web proxy cache server, 93.5K | heap over ow

is applied to reduce the log. The statement instance we wanb treplay is where the
crash happened. The EFF technique is able to reproduce theash in a much shorter
execution. Due to the complexity of the system, the impleméation is not sound

at the current stage. Some times a few event dependences hadbe hard coded,
otherwise the reduced log was not valid to drive the replay vith was manifested as

an event missing when it was expected or the presence of anraxtvent.

Table 7.3 . Performance comparison of di erent execution scenarios.

Benchmark Orig. | Traced | Traced || Logged | Logged || EFF | Traced
(sec.)| (sec.) | /Orig. (sec.) | /Orig. (sec.)| [EFF

bc-1.06 13.6 | 2040.4| 150.6 16.2 1.19 0.05 | 40808.8

mc-4.5.55 10.28 | 417.8 | 40.64 13.47 1.31 0.05 8356
mutt-1.4.2.1i 19.7 | 3237.7| 1645 26.1 1.32 0.06 | 53960.8
pine-4.44(stack) | 14.4 | 2088.4| 145.1 36.8 2.55 0.12 | 17403.6
pine-4.44(heap) | 13.9 | 2102.2| 1515 34.4 2.47 0.20 | 10510.9
squid-2.3 14.6 | 1131.6| 77.3 25.6 1.75 0.17 | 6656.4

Table 7.3 compares the performance under the four scenaridhe original runs,
which were terminated by crashes, consume execution timeasnging from 10.2 to
19.7 seconds, which correspond to the real times of a few nigsl They are not long
by simply looking at the raw numbers, but they well exceed theapability of the
dependence tracing technique. The executions can be easiktended by repeating
the user actions. The side e ect is the increased di culty ofcollecting the time
for the executions in thetraced scenario. Note that even though checkpointing is

supported in our system, the original execution does not lakng enough to trigger

158

it. Fortunately, it does not a ect the evaluations of the EFF technique and the
e ectiveness of dynamic slicing on long running programs.rém table 7.3, we have

the following observations.

Dependence tracing introduces 40.46 to 164.5 times slow aowA programmer

may accept it for a short run but highly unlikely for a long run

The slow down factors for logging range from 1.19 to 2.55, whiare signi cantly
smaller than the tracing slow down factors. For user interdive programs, the

overhead is not noticeable.

EFF can greatly shorten the executions such that dependent@cing becomes

bearable.

Table 7.4 . Comparison of the event logs.

| Benchmark | # of events in Orig. | # of events in EFF | Orig./EFF |

bc-1.06 340509 7 48644.0
mc-4.5.55 322172 16020 20.1
mutt-1.4.2.1i 262559 489 536.9
pine-4.44 7365830 3028 2432.6
pine-4.44 8707316 27279 319.2
squid-2.3 1620988 795 2038.9
Table 7.5 . Comparison of the dependence graphs.

| Benchmark | # of dep.

in Orig. | # of dep. in EFF | Orig./EFF |

bc-1.06 218 101 49 10 44489.8
mc-4.5.55 0:69 10% 96 107 71.8
mutt-1.4.2.1i 4:86 10% 421 10’ 1154.4
pine-4.44 1:.95 109 268 10’ 727.6
pine-4.44 2:78 109 155 1C° 179.4
squid-2.3 1.1 109 1.93 1P 5699.5

Table 7.4 compares the numbers of events before and after veeduction. The

reduction factors range from 20.1 to 48644.0, which very walxplain why the fast

159

forwarded executions become so short. Table 7.5 presents tlumbers of the exercised
data dependences in the original and the fast forwarded ex#ions. Note that these
numbers are collected after the intra-basic-block optimaion as introduced in chapter
3 which eliminates considerable redundant dependences. eThumbers for the fast
forwarded executions are much smaller. The constructed dapdence graphs can be

stored even without further compression as discussed in gter 5.

7.6 Summary

Dynamic slicing can be enabled on a set of long running progna by developing
a novel execution fast forwarding technique. Fast forwardg can be achieved by
driving the replay with a reduced event log le. Given a des&d execution region, a
large portion of the events are not relevant to replaying it.Meta slicing is designed
to eliminate this redundancy in the log le. With the execution fast forwarding

technique, the replayed execution becomes substantiallizester and yet the wanted

execution region is precisely reproduced. The reductionctars of the sizes of dynamic
dependence graphs range from 179.4 to 44489.8. As a reswhaimic slicing can be

practically applied to isolate the cause e ect chain leadip to the failure.

160

Chapter 8
Related Work

8.1 Proling

Program pro les for realistic program runs can greatly beng applications such as
compiler optimization, architecture simulation and faultlocations. This is because
program pro les can be analyzed to identify program charaetistics that can then
be exploited by researchers to guide designs of superior glers and architectures
or be analyzed by programmers to nail program bugs. The key alenge is that
the amounts of pro le information generated during realist program runs can be
extremely large.

One approach to reducing the amount of pro le data is by usingpssy compression
or summarization techniques. Lossy compression of varieifpro les has been carried
out including, dynamic dependence pro les in [7], dynamicantrol ow in [9], and
dynamic values in [19]. Although for many applications sumarization is adequate,
for others they have proved to be inadequate. For example, itas been shown that
summarization of dynamic data dependences results in higavkls of inaccuracy in
dynamic data slices [87].

Researchers have developed lossless compression teclesiqo limit the space re-
quired to store di erent types of pro les. Lossless comprason techniques for several
di erent types of pro les have been separately studied. Copressed representations
of control ow traces can be found in [53, 89]. These pro les can be analyZed pres-
ence of hot program paths or traces [53] which have been exgd for performing
path sensitive optimizations [79, 15, 32] and path-sensig prediction techniques [45].
Value pro les have been compressed using value predictors [16] and usegédoform

code specialization [19], data compression [90], value sylation [56], and value en-

161

coding [78]. Address pro leshave also been compressed [21] and used for identifying
hot data streams that exhibit data locality which can help in nding cache conscious
data layouts [68] and developing data prefetching mechams [22, 47].

Compared to the individual types of pro les, the uni ed WET representation en-
hanced with the tier compression strategy described in chigss 3 and 5 provides high
compression rate and easy access to multiple types of prsleThis greatly bene ts
dynamic slicing based fault location techniques. Moreoveit leads to exploration of
advanced compiler and architecture techniques which sintaheously exploit multiple
types of pro les.

Note that in [13], Bhansali et al. use a ne grained checkpdiimg mechanism
which is able to reproduce di erent kinds of execution proés. They do not store
the complete pro les, instead, they store the minimal amounof pro le information,
which is a subset of the complete load value trace, in order teplay the execution
and retrieve other pro les. They achieve the space e ciencyf 0.1 bit per instruction.
This approach essentially provides the capability of rando re-execution at certain
level, which does not directly serve the demands of many apgdtions. For example,
in the application of dynamic slicing, even though re-exetion is able to recover de-
pendences inside the re-executed window, how to process atate these dependences
is still an issue that needs to be addressed. In other word$eir technique and our

WET representation can be complementary.

8.2 Fault Location

The other main focus of this dissertation is on fault locatio. The work related to

this dissertation is presented in the following subsectisn

162

8.2.1 Slicing Based Approaches

Dynamic slicing was introduced as an aid to debugging by Kdrand Laski in 1988
[49]. Ever since then, dynamic slicing has been studied by myaresearchers [6, 48, 50,
42, 64, 73]. Agrawal et al. [42] proposed subtracting a siegtorrect execution trace
from a single failed execution trace. In [64], Pan and Spa drpresented a family of
heuristics for fault localization using dynamic slicing. @mpared to these previous
works, this dissertation is the rst one to compare the e edtveness of dynamic slicing
algorithms in fault location.

Since the main idea of slicing is to focus the user's attentian a relevant subset of
statements in the program, it is only natural that researchis have explored techniques
for narrowing the relevant set of statements beyond what isatained in a single slice.
In this dissertation, novel slicing criteria are identi edwhose dynamic slices are highly
e ective in capturing faulty code and therefore their intesection also captures the
faulty code. In [34], adynamic chop which is the dynamic dependence subgraph
between two nodes, is used to derive dynamic path conditian& constraint solver is
then used to test whether the derived conditions can be sagsl. If so, the resolved
input serves as a witness to the failure. If not, there is no gendence between the two
nodes even though there exists a dependence path betweenmthdn [20] di erence
of backward slices is computed with the aim of eliminating thse statements that are
less likely to be faulty from the backward slice of an errones output. While [20] is
a set based technique, the con dence analysis presented irapter 6 is a ne grained
graph based pruning technique, which provides the capaltyiof discretely pruning
multiple instances of a static statement. In addition, condence analysis, for the rst
time, considers the mappings between executed statemenstances when computing

the likelihood of a statement instance being faulty.

163

8.2.2 Statistical Approaches

Recently a large body of research has been focused on the dssatistical techniques
for fault location [66, 46, 57, 55, 57, 27]. Harrold et al. [3@ompared the spectra of
passing and failing runs and found that failing runs tend to &ve unusual coverage
spectra. Jones et al. [46] ranked each statement according its ratio of failing
tests to correct tests and used this information to assist €t location. Liblit et al.
[55] describe a sampling framework and present an approaahduess and eliminate
predicates to isolate a deterministic bug. For isolating naleterministic bugs, they use
statistical regression techniques to identify predicatethat are highly correlated with
the program failure. Liu et al. [57] present a more accuratdatistical model which
eliminates some of the limitations in [55] by considering #h situation of only some
executedinstancesof a single predicate being faulty. Fei and Midki [27] preset an
online bug detecting technique, in which a correct model isuit by training through a
set of correct runs, and any signi cant deviation from this noedel in the detection run
raises a ag. Renieris and Reiss [66] focus on the di erencetiveen the failing run
and asingle passing run with similar spectra as a means to narrow down theearch
space for faulty code. Xie and Engler [77] show that many reddancies in programs
correspond to hard program errors. Hangal and Lam [35] idemd the causes of some
programming errors in Java programs by observing violatianof program invariants.
Dynamic slicing di ers from statistical debugging technigies in several signi cant
ways and to some extent it is complimentary to statistical tehniques. Statistical de-
bugging techniques rely on dynamic information (e.g., pa¢rns of predicate outcomes)
collected for a certain number of program runs. In contrastin dynamic slicing, all
slices are based upon the dynamic dependence graph of a sirfgiled program run.
Statistical techniques have the capability of predicting lte future happening of a fail-
ure while dynamic slicing is essentially a post-mortem angalis of the failure. On the

other hand, the ability to predict in statistical techniques comes with the cost of false

164

positives, i.e., some correct statements are indicated aaufty. Another important
characteristic of statistical techniques is that they usuidy rank program statements
according to a score which captures the likelihood of the $eament representing faulty
code. The programmer can then examine the statements in theder of ranking to
locate faulty code. Ranking can also be used in conjunctionittv dynamic slicing.
In [52, 88] the statements in backward dynamic slices are reed according to their
dependence distances from the point at which erroneous outps observed and in
con dence analysis they are ranked according twon dence values which measure the
likelihood that they produced correct results. Finally, satistical techniques usually
simply provide a ranked fault candidate set. In the proceder of debugging, the
programmer usually follows certain cause e ect relationstlocate the bug instead of
inspecting individual statements one by one. In contrast,ythamic slicing usually pro-
duces a dynamic dependence graph, the dependence chainclwiessentially express

the cause-e ect relations.

8.2.3 State Based Approaches

Zeller has presented a series of techniques [41, 81, 24] fisohating the failure induc-
ing input to isolating cost-e ect chains in both space and the. The basic idea is to
nd the speci c part of the input/program state which is critical to the program fail-
ure by minimizing the di erence between thanput/program state leading to a passing
run and that leading to a failing run. Techniques presentednithis dissertation can
be combined with Zeller's technique in many aspects, for i@ ce, the isolatedcauses
are perfect slicing criteria starting from which dynamic sting may produce a much
smaller fault candidate set than from the failure point.

In [39], He and Gupta present a technique which systematidgplsearches for the x
to a program error. Given the trace of a failed execution anche post-condition, the

technique traverses the trace backward and identi es the exution points at which

165

the actual program state deviates from the state inferred &dm the post-condition.
The technique then automatically searches for possible miazhtions to the program
which can make the two program states consistent. These madditions are further
validated using other test cases.

Some of the techniques presented in this dissertation, suak predicate switching,
also approach the problem of fault location through prograrstate investigation and

manipulation.

8.2.4 Static Analysis Based Approaches

The techniques presented in this dissertation are dynamiethniques. There is a large
group of static techniques for fault location. The philosopy of static fault location
is to rst construct a correct model by specifying certain riles, and then statically
analyze the target program to see if these rules are strictipllowed. LCLint [26] uses
annotations to represent assumptions about function intéace, variables, and type ex-
plicit. Constraints derived from these annotations are cleked at compile time. Any
violations are considered as potential errorsCQaul [29] proposes a technique in which
users annotate their programs with ow sensitive type qualkers. The correctness of
the programs can be checked by inferencBre x [18] presents an important method-
ology of using static program analysis to detect memory reked program errors. The
idea is to symbolically execute the functions, modeling thmemory and reporting any
inconsistencies.Slam[10] uses techniques from program analysis, model checkiagd
automated deduction to check whether a C program follows d¢am rules in using an
API. Blast [40] is a similar technique which performs model checking ahe safety
properties of C programs. In [44], the code of a procedure iodeled as relational
formulas, which are conjoined with the negation of the proderre's speci cation. A
constraint solver is used to either verify the procedure oregerate counter-examples.

In [76], Xie and Aiken translates C programs into boolean farulas such that boolean

166

satis ability solvers can be used to e ciently check any vidations to certain speci ed
properties.

In [60], Manevich et al. propose using post-mortem static afysis to locate faults.
The idea is that after knowing the type of failure and the progam location where
the failure happened, static analysis such as pointer analg can be performed more
e ectively such that the ow of a value can be more accuratelpin-pointed. This tech-
nique reveals an interesting direction of combining both dyamic and static analysis
in fault location.

Compared to dynamic approaches, static techniques usualgquire programmers
to write annotations or specications. A large number of fae positives are usu-
ally incurred by the conservative nature of underlying stat analysis such as pointer
analysis.

To address some of these existing issues, a new stream ofaetehas been con-
ducted on using data mining techniques to automatically deover speci cations. In
[25], Engler et al. propose inferring rules, called prograbeliefs, from a large pool of
source code. These beliefs are crosschecked and contraahict are reported. While
[25] only captures pair-wise programming rules, Li and Zhojb4] improve this tech-
nique by mining more complex rules. In [8], Ammons et al. prae discovering
formal speci cations from executions instead of source cedDynamine [58] identi es
highly correlated method calls as well as common bug xes byining source code

check-ins.

167

Chapter 9
Conclusions

9.1 Contributions

This dissertation makes contributions in the area of dynamislicing. In particular, it
greatly improves the e ciency and e ectiveness of dynamiclging. As a debugging
aid, dynamic slicing techniques have been invented for a lptime. However, most of
the previous research was performed on toy programs and shrains, which dimin-
ished the enthusiasm about dynamic slicing. This dissertian discusses techniques
that make dynamic slicing practical and e ective in locatirg faults in realistic pro-

grams. More speci cally, it provides answers to the followg four research questions.

Q1: How expensive is precise dynamic slicing for real progra ms and re-
alistic runs? This dissertation shows that existing dynamic slicing alggchms are
quite expensive because they require constructing dynandependence graphs, which
can take up to 2 gigabytes space, if fully constructed, for thexecution of 130 millions
intermediate statements for realistic programs. A demandriven strategy alleviates
the space problem but the slicing times are very slow. Becaus a demand driven
algorithm, a partial dependence graph is constructed on demnd in response to a
slicing request. Computing multiple slices require repeadlly traversing the execu-
tion traces, which is a procedure that could take up to 20 mirtas for a 130 millions
intermediate statements run. To conclude, without sophistated designs, existing

dynamic slicing algorithms are very expensive in terms of ape and time.

Q2: Can dynamic slicing be made practical? Precise dynamic slicing is so

expensive because it constructs huge dynamic dependencapps(DDGs). Traversing

168

through dynamic information contained in DDGs takes signicant amount of time.
Therefore, optimizations on dynamic dependence graphs, \eh reduce the sizes of
generated graphs, save both space and time. The redundascia DDGs can be
eliminated by two means: a large portion of the dynamic depéence edges in a DDG
can be replaced by static edges because they can be inferrednf static edges; a DDG
can be transformed to enable more inferences. The result®shthat after applying all
the optimizations, only 6% of the original information needo be represented explicitly
in a DDG. For the same 130 millions intermediate statementsin, the optimized DDG
takes the space of 94 megabytes on an average. Note that opzations are di erent
from compression. The latter incurs overhead in traversal hile the former speeds
it up. As shown by the experiments, it takes 16 seconds to travse the optimized
DDGs on average.

In order to further reduce the space consumption, compressi techniques can
be added on top of optimizations. A novel generic bidirecti@l stream compres-
sion technique is introduced, which can achieve high comgston rate and at the
same time is capable of traversing the compressed stream iath the forward and
backward directions. The optimizations and compression @rso e ective that more
information such as value pro les can be embedded in DDGs. €hinformation can
be used to compute more proli ¢ slices such as slices annadtwith the computed
values and prune dynamic slices. A new dynamic representati { Whole Execution
Traces(WETS), is proposed to represent control ow, deperahce, and value pro les
in a uni ed form. WETSs can store the complete dynamic inform&on of a 3.9 billion
intermediate statements run into 2 gigabytes space. Due t&¢ overhead introduced
by compression, computation of a slice on WETs has a 6X slowdo, which is still
much faster than a demand driven algorithm.

In order to scale the technique to long running programs, thidissertation also
discusses using checkpointing in combination with dynamglicing. Checkpoints are

usually created in an interval of minutes while dynamic sling, even after applying all

169

the proposed optimization and compression techniques, canly handle executions
of up to a few seconds. An execution fast forwarding technigus proposed to signi -
cantly reduce the replay execution of a checkpoint intervaduch that dynamic slicing
becomes applicable. To conclude, dynamic slicing becomescim more practical with

all these techniques.

Q3: Is dynamic slicing really useful in debugging real softw are errors?
Experimental results in this dissertation indicate that exsting dynamic slicing algo-
rithms are quite successful in containing the root causes k#al software errors once
they can be applied. However, they are not always applicabsnce a faulty program
may not produce any output as a result of faulty code gettingx@cuted. In such cases,
a wrong output value cannot be recognized, as a result, a glicannot be computed.
Moreover, existing algorithms usually produce large slisewhich require signi cant
amount of time to manually inspect. Finally, there are cases which conventional
backward dynamic slicing techniques fail to capture the raaauses due to the ex-
istence of potential dependences. Even though relevantcatig was proposed as a

plausible solution, the conservative nature of this techgue limits its success.

Q4: Can the fault location e ectiveness of dynamic slicing b e improved?

The limitations originate from one fact { existing algorithms compute the backward
slice(BwS) on only one type of evidence in a failed run, whids the wrong output.
However, a software error may manifest itself in many di enet ways during a failed
run. In other words, more evidences can be collected to helpadyze the error. In
this dissertation, new types of dynamic slices are proposedich take advantage of
di erent types of evidences. Aforward slice (FwS) is computed forfailure inducing
input di erence, which is identi ed by the delta debuggindgechnique. A bidirectional
slice (BiS) is computed for acritical predicate, switching the outcome of which pro-

duces the expected correct output. The experimental ressltshow that while each

170

of BwWS, FwS, and BiS may not be applicable for all the real err® under consider-
ation, each error can be captured by at least one type of slic&he three types of
slices are all applicable for most of the errors, which givese to the opportunity of

combining them together. Considering the wrong output, mimmnal failing inducing

input di erence, and critical predicates together reducehe fault candidate set to 36%
of the smallest of the three sets computed by considering indlual evidences. For
some errors, even after combining multiple types of slicesagnstill include a lot of

statements which are highly unlikely to be wrong. These statments can be pruned
from the slice by considering the values produced by their egutions. A new dy-
namic analysis,con dence analysis is proposed to take advantage of value pro les.
The analysis computes an estimate for the likelihood of a $&anent execution being
faulty. The statements that are considered correct by the alysis are pruned from

the slice. This analysis can reduce a backward dynamic slit®41% on average.

9.2 Future Directions

Improving relevant slicing through predicate switching. Execution omission
errors are known to be resistant to conventional backward dyamic slicing. These er-
rors lead to failure at runtime by means of certain statemestnot being executed while
they should have been if there were no errors, which contrats the fact that dynamic
slicing techniques are mostly based on the information celited from executed state-
ments. Although researchers have attempted to tackle thisrpblem through relevant
slicing, the static nature of this technique becomes a baer to success. Based on
the observation that these errors are hard to detect becauseme of the dependences
are invisible, it is possible to enforce the execution of themitted code by switching
predicates such that those implicit dependences becomedtable. Once these hidden
dependences are disclosed, dynamic slices can be computetieectively pruned to

produce fault candidate sets containing the execution onsi®n errors.

171

Dynamic slicing multithreaded programs. As multi-core and shared memory
systems are becoming more and more popular, multithreadifiggcomes a very impor-
tant programming model. Compared to sequential programs, utithreaded programs
are a lot harder to debug because an error may be caused by th&eractions between
threads. This also implies that a good automatic debuggingthnique is much more
demanded for multithreaded programs. This dissertation stws that dynamic slicing
is very e ective in locating faults in sequential programslit would be very interesting

to see how dynamic slicing can be applied on multithreaded qgrams.

Dynamic matching based on WET. In many application areas, including the
areas of software debugging, maintenance, and piracy ddten, situations arise in
which there is a need for comparing two versions of a programAn existing class
of algorithms that compare two program versions are statici@rencing algorithms.
While these algorithms report static di erences between ate sequences, in situations
where the two program versions correspond to the original driransformed versions
of a program, it is desirable to match code sequences that dymically behave the
same even though they statically appear to be di erent. Let s consider the appli-
cations such as software piracy detection and debugging gitionized code. In these
two applications, one program version is created by transiming the other version.
In the rst application, code obfuscation transformationsmay have been performed
to hide piracy. In the second application, transformationsire applied to generate an
optimized version from the unoptimized version. Since theansformed (obfuscated
or optimized) code looks very dierent from the original cod, static di erencing
approaches will not work for the above applications. The WETepresentation pro-
posed in this dissertation e ciently captures the completedynamic information of an

execution and thus could serve as a basis for dynamic matchitechniques.

172

Other applications of WET. Collection, maintenance, and analysis of detailed
program pro les for realistic program runs can greatly bene compiler and archi-
tecture researchers. This is because program pro les can healyzed to identify
program characteristics that can then be exploited by resezhers to guide the design
of superior compilers and architectures. While individuatypes of pro les have been
studied, the correlations of multiple types of pro les and heir e ects on architecture
and compiler design remain unexplored. For example, hardweapredictors usually
predict based on control ow histories. It would be intereshg to study whether

considering value pro les in the mean time can improve the pdiction accuracy.

173

References

[1] http://ivalgrind.org.

[2] http://lwww.cse.unl.edu/ galileo/sir.

[3] http://www.elis.ugent.be/diablo/.

[4] http://lwww.trimaran.org.

[5] Information week. Issue on Software Quality2002.

[6] Hiralal Agrawal, Richard A. Demillo, and Eugene H. Spa od. Debugging with
dynamic slicing and backtracking.Software Practice and Experienge23(6):589{
616, 1993.

[7] Hiralal Agrawal and Joseph R. Horgan. Dynamic programising. In PLDI '90:
Proceedings of the ACM SIGPLAN 1990 Conference on Programng Language
Design and Implementation pages 246{256, White Plains, New York, United
States, 1990.

[8] Glenn Ammons, Rastislav Bodik, and James R. Larus. Mingnspeci cations.
In POPL '02: Proceedings of the 29th ACM SIGPLAN-SIGACT sympasm on
Principles of programming languagegages 4{16, Portland, Oregon, 2002.

[9] Thomas Ball and James R. Larus. E cient path pro ling. In MICRO 29: Pro-
ceedings of the 29th annual ACM/IEEE International Symposim on Microar-
chitecture, pages 46{57, Paris, France, 1996.

[10] Thomas Ball and Sriram K. Rajamani. Automatically valdating temporal safety
properties of interfaces. INSPIN '01: Proceedings of the 8th International SPIN
Workshop on Model Checking of Softwargpages 103{122, Toronto, Ontario,
Canada, 2001.

[11] Arpad Beszedes, Csaba Farago, Zsolt Mihaly Szabo, Jan@sirik, and Tibor
Gyimothy. Union slices for program maintenance. INCSM '02: Proceedings of
the IEEE International Conference on Software MaintenancéMontreal, Canada,
2002.

[12] Arpad Beszedes, Tamas Gergely, Zsolt Mihaly Szabo, #snCsirik, and Tibor
Gyimothy. Dynamic slicing method for maintenance of large programs. In
CSMR '01: Proceedings of the Fifth European Conference on fBeare Mainte-
nance and Reengineeringpages 105{113, Lisbon, Portugal, 2001.

174

[13] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Bdrds, Ron Murray,
Milenko Drinic, Darek Mihocka, and Joe Chau. Framework fornstruction-level
tracing and analysis of program executions. IWirtual Execution Environments
Conference pages 154{163, Ottawa, Canada, 2006.

[14] William Blume and Rudolf Eigenmann. Symbolic range ppagation. In IPPS
'95: Proceedings of the 9th International Symposium on Pdtal Processing
pages 357{363, Santa Barbara, California, 1995.

[15] Rastislav Bodik, Rajiv Gupta, and Mary Lou So a. Complée removal of re-
dundant expressions. InPLDI '98: Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implemeibat, pages 1{14,
Montreal, Quebec, Canada, 1998.

[16] Martin Burtscher and Metha Jeeradit. Compressing exteled program traces
using value predictors. InPACT '03: Proceedings of the 12th International
Conference on Parallel Architectures and Compilation Techiques pages 159{
169, New Orleans, Louisiana, 2003.

[17] Martin Burtscher and Benjamin G. Zorn. Exploring last nvalue prediction. In
PACT '99: Proceedings of the 1999 International Conferencen Parallel Archi-
tectures and Compilation Techniquespages 66{76, Newport Beach, California,
1999.

[18] William R. Bush, Jonathan D. Pincus, and David J. Siela. A static analyzer
for nding dynamic programming errors. Software Practice and Experience
30(7):775{802, 2000.

[19] Brad Calder, Peter Feller, and Alan Eustace. Value prding. In MICRO 30:
Proceedings of the 30th annual ACM/IEEE International Symgsium on Mi-
croarchitecture, pages 259{269, Research Triangle Park, North Carolina, ded
States, 1997.

[20] T. Y. Chen and Y. Y Cheung. Dynamic program dicing. INnCSM '93: Pro-
ceedings of the IEEE International Conference on Software &ihtenance pages
378{385, Montreal, Quebec, Canada, 1993.

[21] Trishul M. Chilimbi. E cient representations and abstractions for quantifying
and exploiting data reference locality. IlPLDI '01: Proceedings of the ACM SIG-
PLAN 2001 Conference on Programming Language Design and llamentation
pages 191{202, Snowbird, Utah, United States, 2001.

[22] Trishul M. Chilimbi and Martin Hirzel. Dynamic hot data stream prefetching
for general-purpose programs. I#LDI '02: Proceedings of the ACM SIGPLAN

175

2002 Conference on Programming Language Design and Implertadion, pages
199{209, Berlin, Germany, 2002.

[23] Andy Chow Chou. Static analysis for bug nding in systems software PhD
thesis, Standford University, 2003.

[24] Holger Cleve and Andreas Zeller. Locating causes of gram failures. InICSE
'05: Proceedings of the International Conference on SoftwaEngineering pages
342{351, St. Louis, MO, USA, 2005.

[25] Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs asdonsistent be-
havior: A general approach to inferring errors in systems de. In SOSP'01:
Proceedings of the Sixteenth Symposium on Operating SysseRrinciples, pages
57{72, Chateau Lake Louise, Ban, Canada, 2001.

[26] David Evans. Static detection of dynamic memory errorgn PLDI '96: Proceed-
ings of the ACM SIGPLAN 1996 Conference on Programming Langge Design

and Implementation pages 44{53, Philadelphia, Pennsylvania, United States,
1996.

[27] Long Fei and Samuel P. Midki . Artemis: practical runtime monitoring of appli-
cations for execution anomalies. I?LDI '06: Proceedings of the ACM SIGPLAN
2006 Conference on Programming Language Design and Implertadion, pages
84{95, Ottawa, Canada, 2006.

[28] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. WarrenThe program depen-
dence graph and its use in optimization.ACM Transactions on Programming
Languages and System9(3):319{349, 1987.

[29] Je rey S. Foster, Tachio Terauchi, and Alex Aiken. Flowsensitive type quali ers.
In PLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference onrBgram-
ming Language Design and Implementatiompages 1{12, Berlin, Germany, 2002.

[30] Bart Goeman, Hans Vandierendonck, and Koen de Bossaker Di erential
fcm:increasing value prediction accuracy by improving tdb usage e ciency. In
HPCA'0O1l: Procedings of the IEEE International Symposium orHigh Perfor-
mance Computer Architecture pages 207{216, Monterrey, Mexico, 2001.

[31] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupt Locating faulty
code using failure-inducing chops. IRASE '05: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineery, pages 263{272,
Long Beach, CA, USA, 2005.

176

[32] Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Path pre guided partial
redundancy elimination using speculation. IlPACT '97: Proceedings of the 1997
International Conference on Parallel Architectures and Cmpilation Techniques
pages 102{115, San Francisco, California, 1997.

[33] Tibor Gyimothy, Arpad Beszedes, and Istan Forgacs. Anaent relevant slic-
ing method for debugging. INESEC/FSE-7: Proceedings of the 7th European
Software Engineering Conference held jointly with the 7th@M SIGSOFT In-
ternational Symposium on Foundations of Software Engineag, pages 303{321,
Toulouse, France, 1999.

[34] Christian Hammer, Martin Grimme, and Jens Krinke. Dynanic path conditions
in dependence graphs. IfPEPM '06: Proceedings of the 2006 ACM SIGPLAN
Symposium on Partial evaluation and Semantics-based Pragr Manipulation,
pages 58{67, Charleston, South Carolina, 2006.

[35] Sudheendra Hangal and Monica S. Lam. Tracking down sefire bugs using
automatic anomaly detection. InICSE '02: Proceedings of the International
Conference on Software Engineeringpages 291{301, Orlando, Florida, 2002.

[36] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wuand Liu Yi. An em-
pirical investigation of the relationship between spectrdi erences and regression
faults. Software Testing, Veri cation and Reliability, 10(3):171{194, 2000.

[37] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. A empirical in-
vestigation of program spectra. INPASTE '98: Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Softwarelools and
Engineering pages 83{90, Montreal, Quebec, Canada, 1998.

[38] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory leak detec-
tion using adaptive statistical pro ling. In ASPLOS-XI: Proceedings of the 11th
International Conference on Architectural Support for Prgramming Languages
and Operating Systemspages 156{164, Boston, MA, USA, 2004.

[39] Haifeng He and Neelam Gupta. Automated debugging usipgth-based weakest
preconditions. InFASE'04: Proceedings of Fundamental Approaches to Softwear
Engineering pages 267{280, Barcelona, Spain, 2004.

[40] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, anéregoire Sutre. Soft-
ware veri cation with blast. In SPIN'03:Proceedings of the 10th International
Workshop on Model Checking of Software (SPINpages 235{239, Portland, Ore-
gon, 2003.

177

[41] Ralf Hildebrandt and Andreas Zeller. Simplifying faure-inducing input. In
ISSTA '00: Proceedings of the 2000 ACM SIGSOFT InternationaSymposium
on Software Testing and Analysispages 135{145, Portland, Oregon, United
States, 2000.

[42] Saul London W. Eric Wong Hiralal Agrawal, Joseph R. Ho@an. Fault localization
using execution slices and data ow tests. IISSRE'95: Proceedings of the Sixth
IEEE International Symposium on Software Reliability Engieering pages 143{
151, Toulouse, France, 1995.

[43] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomg Ostrand. Experi-
ments of the e ectiveness of data ow- and control ow-basedest adequacy cri-
teria. In ICSE '94: Proceedings of the International Conference on 8ware
Engineering pages 191{200, Sorrento, Italy, 1994.

[44] Daniel Jackson and Mandana Vaziri. Finding bugs with aanstraint solver. In
ISSTA '00: Proceedings of the 2000 ACM SIGSOFT InternationaSymposium
on Software Testing and Analysispages 14{25, Portland, Oregon, United States,
2000.

[45] Quinn Jacobson, Eric Rotenberg, and James E. Smith. Rabased next trace
prediction. In MICRO 30: Proceedings of the 30th annual ACM/IEEE Inter-
national Symposium on Microarchitecture pages 14{23, Research Triangle Park,
North Carolina, United States, 1997.

[46] James A. Jones, Mary Jean Harrold, and John Stasko. Vaization of test infor-
mation to assist fault localization. InICSE '02: Proceedings of the International
Conference on Software Engineeringpages 467{477, Orlando, Florida, 2002.

[47] Doug Joseph and Dirk Grunwald. Prefetching using markopredictors. In
ISCA '97: Proceedings of the International Symposium on Cagmuter Architec-
ture, pages 252{263, Denver, Colorado, United States, 1997.

[48] M. Kamkar. Interprocedural Dynamic Slicing with Applications to Debgging and
Testing. PhD thesis, Linkoping University, 1993.

[49] Bogdan Korel and J. Laski. Dynamic program slicinglnformation Processing
Letters, 29(3):155{163, 1988.

[50] Bogdan Korel and Juergen Rilling. Application of dynarne slicing in program
debugging. INAADEBUG'97: Proceedings of the International Symposium on
Automated Analysis-driven Debuggingrages 43{58, Linkping, Sweden, 1997.

178

[51] Bogdan Korel and Satish Yalamanchili. Forward computagon of dynamic pro-
gram slices. InISSTA '94: Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysipages 66{79, Seattle, Washing-
ton, United States, 1994.

[52] Jens Krinke. Visualization of program dependence antices. InICSM '04: Pro-
ceedings of the IEEE International Conference on Software &ihtenance pages
168{177, Chicago, USA, 2004.

[53] James R. Larus. Whole program paths. IRLDI '99: Proceedings of the ACM
SIGPLAN 1999 Conference on Programming language Design almdplementa-
tion, pages 259{269, Atlanta, Georgia, United States, 1999.

[54] Zhenmin Li and Yuanyuan Zhou. Pr-miner: automaticallyextracting im-
plicit programming rules and detecting violations in largesoftware code. In
ESEC/FSE-13: Proceedings of the 10th European software émggring confer-
ence held jointly with 13th ACM SIGSOFT international sympsium on Foun-
dations of software engineeringpages 306{315, Lisbon, Portugal, 2005.

[55] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jodan. Bug isolation
via remote program sampling. InPLDI '03: Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implertadion, pages
141{154, San Diego, California, USA, 2003.

[56] Mikko H. Lipasti and John Paul Shen. Exceeding the dataw limit via value
prediction. In MICRO 29: Proceedings of the 29th annual ACM/IEEE Interna-
tional Symposium on Microarchitecture pages 226{237, Paris, France, 1996.

[57] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel Midki. Sober:
statistical model-based bug localization. I'lESEC/FSE-13: Proceedings of the
10th European Software Engineering Conference held joythith 13th ACM SIG-
SOFT International Symposium on Foundations of Software Ejineering pages
286{295, Lisbon, Portugal, 2005.

[58] Benjamin Livshits and Thomas Zimmermann. Dynamine: ding common er-
ror patterns by mining software revision histories. INESEC/FSE-13: Proceed-
ings of the 10th European software engineering conferencadjointly with 13th
ACM SIGSOFT international symposium on Foundations of softare engineer-
ing, pages 296{305, Lisbon, Portugal, 2005.

[59] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuayuan Zhou. Bug-
bench: a benchmark for evaluating bug detection tools. IkVorkshop on the
Evaluation of Software Defect Detection TooJsChicago, lllinois, 2005.

179

[60] Roman Manevich, Manu Sridharan, Stephen Adams, ManuvDas, and Zhe
Yang. Pse: explaining program failures via postmortem stat analysis. InFSE-
12: Proceedings of the Twelfth ACM SIGSOFT twelfth intern&nal symposium
on Foundations of software engineeringages 63{72, Newport Beach, CA, USA,
2004.

[61] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Boet: Continuously
recording program execution for deterministic replay delgging. In ISCA '05:
Proceedings of the 32nd Annual International Symposium ono@puter Archi-
tecture, pages 284{295, Madison, Wisconsin, USA, 2005.

[62] Craig G. Nevill-Manning and lan H. Witten. Linear-time, incremental hierarchy
inference for compression. IMCC '97: Proceedings of the Conference on Data
Compression pages 3{11, Washington, DC, USA, 1997. IEEE Computer Sotye

[63] Akira Nishimatsu, Minoru Jihira, Shinji Kusumoto, and Katsuro Inoue. Call-
mark slicing: an e cient and economical way of reducing slie. In ICSE '99:
Proceedings of the International Conference on Software Bimeering pages 422{
431, Los Angeles, California, United States, 1999.

[64] Hsin. Pan and Eugene H. Spa ord. Heuristics for automat localization of soft-
ware faults, 1992. Technical Report SERC-TR-116-P, Purdudniversity.

[65] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and ryuman Zhou. RX:
treating bugs as allergies - a safe method to survive softwegfailures. INSOSP'05:
Proceedings of the Twentith ACM Symposium on Operating Sgsts Principles
pages 235{248, Brighton, UK, 2005.

[66] Manos Renieris and Steven Reiss. Fault localization thvi nearest neighbor
queries. InASE '03: Proceedings of the IEEE/ACM International Conferance
on Automated Software Engineeringpages 30{39, Montreal, Canada, 2003.

[67] Martin C. Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor
Leu, and William S. Beebee. Enhancing server availabilityral security through
failure-oblivious computing. In OSDI '04: Proceedings of the the Sixth Sym-
posium on Operating System Design and Implementatiopages 303{316, San
Francisco, California,, 2004.

[68] Shai Rubin, Rastislav Bodik, and Trishul Chilimbi. An ecient pro le-analysis
framework for data-layout optimizations. InPOPL '02: Proceedings of the 29nd
ACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLanguages
pages 140{153, Portland, Oregon, 2002.

180

[69] Joseph R. Ruthru, Margaret Burnett, and Gregg Rothernel. An empirical
study of fault localization for end-user programmers. INCSE '05: Proceedings
of the International Conference on Software Engineeringpages 352{361, St.
Louis, MO, USA, 2005.

[70] Yiannakis Sazeides. Instruction-isomorphism in progm execution. InProceed-
ings of the 1st Annual Value Prediction WorkshgpSan Diego, CA, 2003.

[71] Yiannakis Sazeides and James E. Smith. Implementat®of context-based value
predictors. Technical Report TRECE -97-8, University of Winsconsin.

[72] Yiannakis Sazeides and James E. Smith. The predictatyilof data values. In
MICRO 30: Proceedings of the 30th annual ACM/IEEE internatonal symposium
on Microarchitecture, pages 248{258, Research Triangle Park, North Carolina,
United States, 1997.

[73] Tao Wang and Abhik Roychoudhury. Using compressed bytede traces for
slicing java programs. InICSE'04:Proceedings of the International Conference
on Software Engineeringpages 512{521, Edinburgh, United Kingdom, 2004.

[74] Mark Weiser. Program slices: formal, psychological, and practical ing&gations
of an automatic program abstraction methad PhD thesis, 1979. University of
Michigan.

[75] Mark Weiser. Program slicing. InNICSE '81: Proceedings of the International
Conference on Software Engineeringpages 439{449, San Diego, California,
United States, 1981.

[76] Yichen Xie and Alex Aiken. Scalable error detection usy boolean satis ability.
In POPL '05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympasm on
Principles of Programming Languagespages 351{363, Long Beach, California,
USA, 2005.

[77] Yichen Xie and Dawson Engler. Using redundancies to nerrors. In FSE-10:
Proceedings of the 10th ACM SIGSOFT symposium on Foundati®mof software
engineering pages 51{60, Charleston, South Carolina, USA, 2002.

[78] Jun Yang and Rajiv Gupta. Frequent value locality and i applications. ACM
Transactions on Embedded Computing Systenig1):79{105, 2002.

[79] Cli Young and Michael D. Smith. Better global schedulhng using path pro-
les. In MICRO 31: Proceedings of the 31st annual ACM/IEEE Internatonal
Symposium on Microarchitecture pages 115{123, Dallas, Texas, United States,
1998.

181

[80] Andreas Zeller. Yesterday, my program worked. todayt does not. why? In
ESEC/FSE-7: Proceedings of the 10th European Software Engering Confer-
ence held jointly with 13th ACM SIGSOFT International Sympsium on Foun-
dations of Software Engineeringpages 253{267, 1999.

[81] Andreas Zeller. Isolating cause-e ect chains from cgmter programs. In SIG-
SOFT '02/FSE-10: Proceedings of the 10th ACM SIGSOFT Sympasn on
Foundations of Software Engineeringpages 1{10, Charleston, South Carolina,
USA, 2002.

[82] Andreas ZellerWhy Programs Fail: A Guide to Systematic Debuggindviorgan
Kaufmann, October 2005.

[83] Andreas Zeller and Ralf Hildebrandt. Simplifying andsolating failure-inducing
input. IEEE Transactions on Software Engineering28(2):183{200, 2002.

[84] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locatindaults through au-
tomated predicate switching. INICSE '06: Proceeding of the International Con-
ference on Software Engineeringpages 272{281, Shanghai, China, 2006.

[85] Xiangyu Zhang and Rajiv Gupta. Matching execution hisiries of program ver-
sions. INESEC/FSE-13: Proceedings of the 10th European Software Enegering
Conference held jointly with 13th ACM SIGSOFT Internationa Symposium on
Foundations of Software Engineeringpages 197{206, Lisbon, Portugal, 2005.

[86] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Preciseythamic slicing algo-
rithms. In ICSE '03: Proceedings of the International Conference on 8ware
Engineering pages 319{329, Portland, Oregon, 2003.

[87] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Cost andnecision tradeo s of
dynamic data slicing algorithms.ACM Transactions on Programming Languages
and Systems27(4):631{661, 2005.

[88] Xiangyu Zhang, Haifeng He, Neelam Gupta, and Rajiv Gupt Experimental
evaluation of using dynamic slices for fault location. INADEBUG'05: Proceed-
ings of the International Symposium on Automated Analysidriven Debugging
pages 33{42, Monterey, California, USA, 2005.

[89] Youtao Zhang and Rajiv Gupta. Timestamped whole progm path represen-
tation and its applications. In PLDI '01: Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and Implertadion, pages
180{190, Snowbird, Utah, United States, 2001.

182

[90] Youtao Zhang and Rajiv Gupta. Data compression transfimations for dynami-
cally allocated data structures. InCC '02: Proceedings of the 11th International
Conference on Compiler Constructionpages 14{28, London, UK, 2002.

[91] Pin Zhou, Wei Liu, Fei Long, Shan Lu, Feng Qin, Yuanyuan Eou, Samuel.
Midki , and Josep Torrellas. Accmon: Automatically detecing memory-related
bugs via program counter-based invariants. IMMICRO 37: Proceedings of the
37th annual ACM/IEEE International Symposium on Microarchitecture, pages

269{280, Portland, OR, 2004.

[92] Craig B. Zilles and Gurindar S. Sohi. Understanding thédackward slices of
performance degrading instructions. INSCA '00: Proceedings of the Interna-
tional Symposium on Computer Architecturepages 172{181, Vancouver, British

Columbia, Canada, 2000.

