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Abstract

Developing automated techniques for identifying a fault candidate set (i.e., subset of

executed statements that contains the faulty code responsible for the failure during a

program run), can greatly reduce the e�ort of debugging. Over 15 years ago precise

dynamic slicing was proposed to identify a fault candidate set as consisting of all

executed statements that in
uence the computation of an incorrect value through a

chain of data and/or control dependences. However, the challenge of making precise

dynamic slicing practical has not been addressed. This dissertation addresses this

challenge and makes precise dynamic slicing useful for debugging realistic applica-

tions. First, the cost of computing precise dynamic slices is greatly reduced. Second,

innovative ways of using precise dynamic slicing are identi�ed to produce small failure

candidate sets.

The key cause of high space and time cost of precise dynamic slicing is the very

large size of dynamic dependence graphs that are constructed and traversed for com-

puting dynamic slices. By developing a novel series of optimizations the size of the

dynamic dependence graph is greatly reduced leading to a compact representation

that can be rapidly traversed. Average space needed is reduced from 2 Gigabytes to

94 Megabytes for dynamic dependence graphs corresponding to executions with av-

erage lengths of 130 Million instructions. The precise dynamic slicing time is reduced

from up to 20 minutes for a demand-driven algorithm to 16 seconds. A compres-

sion algorithm is developed to further reduce dependence graph sizes. The resulting

representation achieves the space e�ciency such that the dynamic execution history

of executing a couple of billion instructions can be held in aGigabyte of memory.

To further scale precise dynamic slicing to longer program runs, a novel approach is

proposed that uses checkpointing/logging to enable collection of dynamic history of

only the relevant window of execution.



12

Classical backward dynamic slicing can often produce faultcandidate sets that

contain thousands of statements making the task of identifying faulty code very time

consuming for the programmer. Novel techniques are proposed to improve e�ec-

tiveness of dynamic slicing for fault location. The merit ofthese techniques lies in

identifying multiple forms of dynamic slices in a failed runand then intersecting them

to produce smaller fault candidate sets. Using these techniques, the fault candidate

set size corresponding to the backward dynamic slice is reduced by nearly a factor of

3. A �ne-grained statistical pruning technique based on value pro�les is also devel-

oped and this technique reduces the sizes of backward dynamic slices by a factor of

2.5.

In conclusion, this dissertation greatly reduces the cost of precise dynamic slicing

and presents techniques to improve its e�ectiveness for fault location.
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Chapter 1

Introduction

Software is pervasive in modern society. Not only does running a business depend

on computer software for production, distribution and after-sales support, but living

everyday life also relies on software for communication, entertainment, and so on. Un-

fortunately, as Mark Paulk from Carnegie Mellon's University's Software Engineering

Institute noted,\ A fundamental problem with software quality is that programmers

make mistakes" [5]. Software development is primarily a human activity and hu-

mans make mistakes. As a result, errors inevitably creep into software in spite of the

advances made in the areas of programming languages and software development pro-

cesses. The impact of software errors is enormous. According the report of National

Institute of Standards and Technology(NIST) in 2002, software errors caused the US

economy an estimated $59.5 billion annually, or about 0.6 percent of the gross do-

mestic product(GDP). The loss arose from both the user side and the developer side.

Moreover, the recent progress in computer architecture andprogramming languages

has given rise to more and more complicated software development procedures, which

in turn make software more and more vulnerable to human mistakes. Therefore, how

to improve the quality of software by reducing the number of errors has posed an

imminent challenge to the research community.

To improve the quality of software, both static and dynamic analyses can be used.

Static analyses [10, 40, 29, 18, 76, 23, 26, 44] have the powerof proving a program

is free of certain types of errors. However, static analyseshave limitations. First

of all, they are usually accompanied by false positives, i.e. programs are identi�ed

as faulty while they are not. This is due to the conservative nature of underlying

program analyses such as alias analysis. Second, static analyses are only capable of
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verifying certain simple properties. Third, static analyses usually require developers

to provide speci�cations, which many developers are reluctant to write. Therefore,

static analyses cannot remove all the software errors.

A software error can manifest itself at runtime as a softwarefailure once it has

escaped detection through static analyses. In such circumstances, dynamic analyses

are needed to detect and locate the error. In recent years, a wide variety of dynamic

analyses have been proposed [66, 55, 69, 46, 37, 57, 35, 38, 81]. Many employ machine

learning or statistical techniques to observe runtime deviations from certain invariants

and raise alarms for those anomalies. Others try to understand bugs by doing search

in the program state space. Such techniques produce a fault candidate set for a failed

run, which is basically a set of statements that include the faulty code.

A debugging aid which �nds a fault candidate set and tries to explain the cause-

e�ect relations between faulty code and failure through dependences is called program

slicing. This was �rst introduced by Mark Weiser [74, 75]. The program slice cor-

responding to a variable at a speci�c program point is de�nedto contain the subset

of program statements which can potentially contribute to the computation of the

value of the variable across all program executions. Weisergave the �rst static slicing

algorithm, in which the static slice is computed by taking a transitive closure over

data and control dependences that directly or indirectly in
uence the value of the

variable at a program point. Since the objective of slicing is to focus the attention

of a programmer or an algorithm to a relevant subset of program statements, conser-

vatively computed and thus usually very large static slicesare undesirable in many

cases.

Realizing this limitation of static slicing in debugging, Korel and Laski proposed

the idea ofdynamic slicing[49]. The dependences that are exercised during a program

execution are captured precisely and saved in form of adynamic dependence graph.

Dynamic program slices are constructed in response to requests by traversing the

captured dynamic dependence information.



15

The main focus of this dissertation is fault location via precise dynamic slicing.

Although dynamic slicing has been invented for almost two decades and a lot of

research has been carried out on various dynamic slicing algorithms [7, 11, 12, 51, 63]

and also on di�erent ways of applying dynamic slicing to fault location [48, 20, 50, 6],

there remain two main challenges:

� Computation of dynamic slices isine�cient in terms of execution time and

space.

� Dynamic slices are usually quite large limiting theire�ectivenessfor fault loca-

tion.

Computation of dynamic slices requires processing execution traces including the

control 
ow trace, memory trace, and possibly value trace. The time and space re-

quirements are in general proportional to the execution length, which makes dynamic

slicing prohibitively expensive if the execution gets long. An execution of 100 Millions

instruction could require up to 2 Gigabytes space, and traversing through such a high

volume of dynamic information to compute a dynamic slice could take minutes. A

few algorithms have been proposed to improve space e�ciency[7, 12], but they also

have inherent limitations. Most people still consider precise dynamic slicing as an

impractical technique and most of the current implementations are only applicable

to toy programs and short executions. In this dissertation,novel techniques that

signi�cantly improve the e�ciency of dynamic slicing are proposed.

The second main challenge is the e�ectiveness problem. Classic dynamic slicing

algorithms are quite e�ective in containing the root causesof bugs but usually pro-

duce over-sized slices which may contain thousands of source code statements. Hence,

manually inspecting these slices often requires tremendous e�ort. Conventional algo-

rithms consider only one type of dynamic slice of a failed run, which is the backward

dynamic slice of wrong output. In this dissertation, other dynamic slices including the

forward dynamic slice of failure inducing input and the bidirectional dynamic slice of
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a critical predicate are identi�ed. The combinations of these dynamic slices further

reduce the fault candidate set and improve the e�ectivenessof dynamic slicing for

fault location.

The contributions of this dissertation are summarized as follows.

� The cost and e�ectiveness of traditional precise dynamic slicing algorithms are

thoroughly studied on realistic programs and executions. The limitations of

existing techniques are identi�ed and they serve as the motivation for this dis-

sertation.

� A uni�ed trace representation, Whole Execution Trace(WET), is designed as

the solution to the e�ciency challenge. WET e�ciently captures a set of com-

plete traces of an execution including control 
ow trace, value trace, and depen-

dence trace. Sophisticated optimizations are �rst appliedto remove redundancy

in the traces so that both the time of accessing the traces andthe space required

to store the traces are signi�cantly reduced. In addition, ageneric compression

technique, which has the novel feature of bidirectional traversibility, is further

employed to reduce the space consumption. The space e�ciency achieves 4 bits

per executed instruction. While fault location is the only application of WET

in this dissertation, it has a wide variety of other potential applications such as

software security [85], compiler, and architecture research.

� One of the key observations presented in this dissertation is that traditional

dynamic slicing techniques have limited e�ectiveness in locating faults because

they consider only one type of evidence in the failed run { thewrong output.

In this dissertation, new types of dynamic slices are proposed to take advantage

of new types of evidences.

� Traditionally, dynamic slices are computed based on dependence pro�les. This

dissertation, for the �rst time, shows that value pro�les can be used to assign
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weights to each executed statement, which indicates the likelihood of that ex-

ecuted statement being faulty. Such likelihood estimates can be used to prune

a pre-computed dynamic slice. The essence of the new technique is that edges

in a dynamic dependence graph should disclose the reliability of dependences

in addition to the existence of dependences. For example, ifa dependence

edge represents a one-to-one mapping, the correctness of the de�nition can be

inferred from the correctness of the use, which is not true for a many-to-one

mapping. This key idea and the proposed technique have the potential impact

on information 
ow research as well.

� Finally, this dissertation also presents an e�ort to scale dynamic slicing to

long running programs by integrating dynamic slicing with logging/replay tech-

niques.

The rest of the dissertation is organized as follows. In chapter 2, background infor-

mation is given to facilitate understanding of the remaining chapters. The challenges

of e�ciency and e�ectiveness of precise dynamic slicing arediscussed in detail and

the corresponding solutions are also brie
y mentioned. In chapter 3, optimizations

on dynamic dependence graphs, which are the basic trace representation for dynamic

slicing, are described. Chapter 4 discusses how multiple types of dynamic slices can

be used together to improve the e�ectiveness of fault location. In chapter 5, value

pro�les are optimized and then compressed using a novel prediction based compres-

sion technique. Chapter 6 explains how value pro�les can be used to estimate the

likelihood for a statement execution being faulty. This information can be used to

reduce the size of a fault candidate set. Chapter 7 proposes combining tracing with

checkpointing such that dynamic slicing can be scaled to much longer runs. Related

work is discussed in chapter 8. Conclusions and directions for future work are given

in chapter 9.
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Chapter 2

The Fault Location Framework

This chapter begins by providing background information ontwo components of the

fault location framework. It �rst introduces program execution pro�lesthat are col-

lected for the purpose of dynamic analysis. Second, background information on dy-

namic slicing, which is the primary form of dynamic analysis used for faultlocation in

this work, is introduced. Next, the challenges in constructing an e�cient and e�ective

framework are identi�ed so that the resulting framework canbe used in practice for

debugging real applications. This chapter also brie
y describes how these challenges

are addressed in the remainder of this dissertation.

2.1 Execution Pro�les: The WET Representation

Pro�les of di�erent kinds have been exploited for variety oftasks such as code opti-

mization [79, 15, 32], architecture design [22, 47, 92], debugging and testing software

[7]. A comprehensive set of pro�le data that captures the complete functional execu-

tion history of a program run must include the following:

� Control 
ow pro�le. Control 
ow pro�le captures the complete control 
ow

path taken during an execution.

� Value pro�le; This pro�le captures the values that are computed and referenced

by each executed statement. Values may correspond to data values or addresses.

� Dependence pro�le.Dependence pro�le captures the information about data/control

dependences exercised during an execution. A data dependence represents the


ow of a value from the statement that de�nes it to the statement that uses it
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as an operand. A control dependence between two statement represents that

the execution of one statement depends on the branch outcomeof a predicate

in the other statement.

Together the above information tells what statements were executed and in what

order (control 
ow pro�le), what operands and addresses were referenced as well as

what results were produced during each statement execution(value pro�le), and the

statement executions on which a given statement execution is data/control dependent

(dependence pro�le).

A uni�ed representation, the Whole Execution Trace (WET), that holds a full

execution history is employed in the framework. WET is essentially a static repre-

sentation of the program that is labeled with the dynamic pro�le information. This

organization provides a direct access to all of the relevantpro�le information asso-

ciated with every execution instance of every statement. A statement in WET can

correspond to a source level statement, intermediate levelstatement, or a machine in-

struction. However, in the remainder of this section, it is assumed that each statement

is an intermediate code statement.

In order to represent pro�le information of every executioninstance of every state-

ment, it is clearly necessary to distinguish between execution instances of statements.

The WET representation distinguishes between execution instances of a statement

by assigning uniquetimestampsto them [89]. To generate the timestamps atime

counter is maintained that is initialized to one and each time a basic block is exe-

cuted, the current value oftime is assigned as a timestamp to the current execution

instances of all the statements within the basic block and then time is incremented

by one. Timestamps assigned in this fashion essentially remember the ordering of all

statements executed during a program execution. The notionof timestamps is also

key to representing and accessing the dynamic information contained in WET.
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The WET is essentially a labeled graph whose form is de�ned next. A label as-

sociated with a node or an edge in this graph is an ordered sequence where each

element in the sequence represents a subset of pro�le information associated with

an execution instance of a node or edge. The relative ordering of elements in the

sequence corresponds to the relative ordering of the execution instances. A sequence

of elementse1, e2,.. is denoted as [e1e2:::]. For ease of presentation it is assumed

that each basic block contains one statement, i.e., there isone to one correspondence

between statements and basic blocks.

De�nition: The Whole Execution Trace (WET) is represented in form of a labeled

graph G(N; E (CF; CD; DD )) where:

N is the set of statements in the program. Each statements 2 N is labeled with a

sequence of ordered pairs: [< t s; vals > ] where statements was executed at timets

and it produced the valuevals. Note that in general when a node contains multiple

statements, instead of a single value in each ordered pair, aset of values are used,

each one of which corresponds to a distinct statement in the basic block.
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E is the set of edges. The edges are bidirectional so that the graph can be traversed in

either direction. (s ! d) denotes direction of the edge that takes us from the source

s of the dependence to the destinationd of the dependence while (s  d) is used to

denote the reverse direction. The edges are subdivided intothree disjoint categories.

� DD is the set of data dependenceedges in the program. Each edge (sdd !

s) 2 DD is labeled with a sequence of ordered pairs: [< t s; tsdd > ] where
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statements was executed at timets using an operand whose value was produced

by statement sdd at time tsdd.

� CD is the set ofcontrol dependenceedges in the program. Each edge (scd !

s) 2 CD is labeled with a sequence of ordered pairs: [< t s; tscd > ] where

statements was executed at timets as a direct result of the outcome of predicate

scd executed at timetscd.

� CF is the set ofcontrol 
ow edges in the program. These edges areunlabeled.

The example in Figure 2.1 illustrates the form of WET. A control 
ow graph and

control 
ow trace of one possible execution is given in Figure 2.1a. Since the entire

WET for the example is too large, the �gure only shows the subgraph of WET that

captures the pro�le information corresponding to the executions of node 8. The label

on node 8 says that statement 8 is executed �ve times at timestamps 7, 37, 57, 77,

and 97 producing values c, d, d, d, and c respectively. Executions of statement 8

are control dependent upon statement 6 and data dependent onstatements 4, 2 and

15. Therefore CD and DD edges are introduced whose labels express the dependence

relationships between execution instances of statements 6, 4, 2, and 15 with statement

8. Unlabeled control 
ow edges connect statement 8 with its predecessor 6 and

successor 9 in the control 
ow graph.

Next it will be shown how WET can be used to respond to a varietyof useful

queries for subsets of pro�le information. The ability to respond to these queries

demonstrates that the WET representation incorporates allof the control 
ow, data

and control dependence, value, and address pro�le information.

Control 
ow path. The path taken by the program can be generated from

WET using the combination of static control 
ow edges (CF ) and the sequences of

timestamps associated with nodes (N ). If a node is labeled with< t; � > , the node

that is executed next must be labeled with< t + 1; � > . Using this observation, the

complete path or part of the program path at any execution point can be generated.
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Figure 2.1 . An example: (a) CFG and its control 
ow trace; (b) WET subgraph of
node 8.
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Values and addresses. The value and address pro�les are captured by the

values contained in [< t; v > ] sequences associated with nodes. Some values represent

data while others represent addresses { the distinction canbe made by examining the

use of the values. Values produced by executions of a statement can be obtained by

simply examining its [< t; v > ] sequence. Addresses corresponding to executions of a

speci�c statement can be obtained by simply examining the [< t; v > ] sequences of

statements that produce the operands for the statement of interest. On the other hand

the sequence of values (addresses) that are produced (referenced) during program

execution can be extracted by following the control 
ow pathtaken as described

earlier and then examining the relevant< t; v > pair of each node as it is encountered.

Data and control dependences. All instances of data and control dependences

are captured explicitly by labeled edges (CD and DD ). Chains of data dependences,

control dependences, or combinations of both types of dependences can all be easily

found by traversing the WET.

The above descriptions already explain the organization ofall types of pro�le

data in the WET representation which allows variety of queries to be responded

to with ease. Given the large amounts of pro�le information,the sizes of WETs

are expected to be extremely large. This dissertation addresses the challenge of

compressing WETs in a manner that does not destroy the ease ore�ciency with

which queries for information can be handled.

2.2 Fault Location: Backward Dynamic Slicing

The essence of fault location is to provide programmers a fault candidate set which

includes the statements that are suspected to be the root cause of a program failure.

One approach for providing such a fault candidate set isdynamic slicing[49]. Consider

a failing run which produces an incorrect output value or crashes due to dereferencing

an illegal memory address. The incorrect output value or theillegal address value is
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now known to be related to faulty code executed during this failed run. It should be

noted that identi�cation of an incorrect output value will r equire help from the user

unless the correct output for the test input being considered is already available to

us. The fault candidate set is constructed by computing the dynamic slice backward

starting at the incorrect output value or illegal address value. Before introducing

how dynamic slices are computed, the concept ofdynamic dependence graph(DDG)

is de�ned based on the WET representation. The nodes in a DDG are the nodes

in WET without timestamp and value labels. The edges in a DDG are essentially

CD [ DD .

De�nition 1. Given a WET, which is a labeled graphG(N0; E0(CF; CD; DD )), the

Dynamic Dependence Graph of a program run, DDG(N; E ), consists of a set of

nodesN and set of directed edgesE where:

N = f s j s[< t s; vals > ] 2 N0g

E = f (s ! d)[< t s; td > ] j (s ! d)[< t s; td > ] 2 CD [ DD g

Let s < t s > denote the execution instance ofs at time ts and (m ! n) < t m ; tn >

denote a dynamic data dependence or dynamic control dependence of the execution

instance of statementn at time tm on the execution instance of statementm at tn .

Now given an executed statements < t s > , the backward dynamic sliceDDGSlice(s <

ts > ) is the subgraph of the DDG from whichs < t s > is reachable by following the

forward edges, i.e., the edges from a dependence source to a dependence destination.

Given a DDG (N; E ), DDGSlice(s < t s > ) is computed as follows:

DDGSlice(s < t s > ) = f NSlice(s < t s > ); ESlice(s < t s > g

NSlice(s < t s > ) = f s [
[

8(s0! s)<t s0;t s > 2 E

NSlice(s0 < t s0 > );

ESlice(s < t s > ) = f (s0 ! s) < t s0; ts > [
[

8(s0! s)<t s0;t s > 2 E

ESlice(s0 < t s0 > );
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In other words, DDGSlice(s < t s > ) is a labeled subgraph of theDDG , and the

edge labels onDDGSlice(s < t s > ) are subsets of the corresponding edge labels on

the DDG . During debugging, both the statements in the slice and the dependence

edges that connect them provide useful clues to the failure cause.

A more traditional de�nition of a dynamic slice is essentially a set of static state-

ments, which is represented by the set of nodes in theDDGSlice. It is also referred

to as the dynamic backward slice(BwS) which is given by the following equation:

BwS(s < t s > ) = NSlice(s < t s > )
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Figure 2.2 . Heap over
ow bug in bc � 1:06.

The bene�t of backward dynamic slicing is illustrated usingan example of bug in

bc � 1:06 which causes a heap over
ow error. In this program, a heap bu�er is not

allocated to be wide enough which causes an over
ow. The codecorresponding to

the error is shown in Figure 2.2. The heap arrayarrays allocated at line number 167

over
ows at line 177 causing the program to crash. Thereforethe dynamic slice is

computed starting at the address ofarrays[indx] that causes the segmentation fault.

Since the computation of the address involvesarrays[] and indx, both statements at

lines 167 and 176 are included in the dynamic slice. By examining statements at lines

167 and 176, the cause of the failure becomes evident to the programmer. It is easy

to see that althougha count entries have been allocated at line 167,v count entries
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are accessed according to the loop bounds of thefor statement at line 176. This is

the cause of the heap over
ow at line 177.

2.3 Challenge One: E�cient Pro�le Representation

Although a WET captures the full execution history of a program run, the size of

WET can be very large. To demonstrate this experiments were performed. Table 2.1

lists the benchmarks considered and the lengths of the program runs which vary from

365 and 751 Million intermediate level statements. The results show that the average

size of the WETs is 9589 megabytes for the execution length of646.90 millions IR

statements. As for individual components, timestamp node labels, value node labels,

and edges labels consume 2467, 1731, and 5390 megabytes respectively. Note that

the above WETs do not correspond to complete program runs because the ones for

complete program runs were exceedingly large. As the results show, it is impossible to

keep WETs in memory for the purpose of dynamic slicing especially for long program

runs.

Table 2.1 . WET sizes.

Benchmark Input Stmts Executed WET Node labels (MB) Edge labels
(Millions) (MB) ts val s (MB)

099.go training 685.28 10369.32 2614.12 1849.09 5908.12
126.gcc ref/insn-emit.i 364.80 5237.89 1391.60 1945.03 2901.26
130.li ref 739.84 10399.06 2822.26 1894.48 5682.32
164.gzip training 650.46 9687.88 2481.32 1733.13 5473.42
181.mcf testing 715.16 10541.86 2728.12 1875.21 5938.54
197.parser training 615.49 8729.88 2347.92 1615.57 4766.38
255.vortex training/lendian 609.45 8747.64 2324.87 1641.31 4781.46
256.bzip2 training 751.26 11921.19 2865.81 2154.85 6900.52
300.twolf training 690.39 10666.19 2633.64 1873.52 6159.03

Avg. n/a 646.90 9588.99 2467.74 1731.13 5390.12

The Trimaran [4] compiler infrastructure was used in the above experiment. The

statements here correspond to Trimaran's intermediate level statements. The pro-

grams were executed on the simulator which avoided introduction of intrusion as no

instrumentation was needed. The experiments were carried out on a Pentium IV 2.4
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GHz machine with 2 Gigabyte RAM and 120 Gigabyte hard disk.

Although it is desirable to hold a WET in memory, as the above experiment shows

a WET may be too large. One solution to the space problem is to save the trace on

disk and then traverse these traces to construct the dynamicslice on demand. In this

approach instead of requiring enough memory to hold the fulldynamic dependence

graph, only the memory to hold the subgraph representation of the dynamic slice

is needed. In [86] this approach was explored.A demand driven analysison the

trace was employed to recover only the relevant dynamic dependences and thus avoid

constructing a full graph. When a slice computation begins the trace is traversed

backwards to recover the dynamic dependences required for the slice computation.

Note that since the interesting de�nitions will always appear earlier than the uses, a

single traversal of the trace is su�cient to perform a singleslice computation.

In the above algorithm, the time required to traverse a long execution trace is a

signi�cant part of the cost of slicing. This trace traversalcan be speeded up as follows:

the trace is divided into trace blockssuch that each trace block is of a �xedsize. At

the end of each trace block asummary of all downward exposed de�nitionsof variable

names and memory addresses is generated and stored. During the backward traversal

for slicing, when looking for a de�nition of a variable or a memory address, the

algorithm �rst looks for its presence in the summary of downward exposed de�nitions.

If a de�nition is found, the trace block is further traversed to locate the de�nition;

otherwise using thesize information the algorithm skips right away to the start of

the trace block. Results in [86, 87] show that on average over80% of the trace blocks

are skipped.

In order to study the performance of the above demand driven algorithm, 25 slices

were computed for each of program runs in the previous experiment. These slices were

performed for the latest executions of 25 distinct values loaded using load statements

by the program. The results are presented in Table 2.2. In thetable, the sizes of

the dynamic dependence graphs (DDGs) are presented.Full denotes the size of a full
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Table 2.2 . The performance of thedemand drivenalgorithm.

Program Executed Statements DDG Size (MB) Average Slicing Time
(Millions) Full Max (Minutes)

099.go 138 1,707 162 10.7
130.li 125 1,745 105 11.3
126.gcc 131 1,534 58 12.1
134.perl 220 1,954 54 25.2
181.mcf 118 1,535 114 12.3
197.parser 123 1,816 40 9.9
255.vortex 108 1,442 34 10.2
256.bzip2 67 1,296 81 9.2
300.twolf 141 1,568 296 13.9
Average 130 1622 105 12.7

DDG while Max denotes the maximum DDG constructed during the 25 computations

for each program. The average slicing time is also given. From the table, the average

maximum DDG has the size of 130 megabytes while the full DDG constructed has

the size of 1622 megabytes. In other words, the demand drivenalgorithm greatly

alleviates the space problem and makes it feasible to compute dynamic slices for much

longer runs. However, since computing each slice requires traversing and processing

the entire trace, the slicing time is quite slow even after enabling faster traversal using

trace block summaries. On average it took 9.2 to 25.2 minutesto compute a single

dynamic slice across the di�erent benchmarks. In conclusion, although the demand

driven algorithm is space e�cient, it is ine�cient in terms o f execution time.

The above discussion leads to the following challenges thatmust be addressed.

Challenge One: A pro�le representation that is both space and time e�cient is

desired. First, such a representation should be capable of holding a large amount

of pro�le data in a small amount of memory. Second, this representation should be

rapidly traversable so that dynamic slices can be computed in a time e�cient manner.

Overview of Solutions:

� Dependence is the type of pro�le information required to perform conventional
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dynamic slicing. A set of optimizations that greatly improve the space e�ciency

of a dynamic dependence graph are introduced inchapter 3. The optimized

representation can be traversed in a time e�cient manner.

� New techniques to compress value pro�les are developed inchapter 5. As shown

in chapter 6, these value pro�les can be used in addition to dependence pro�les

to increase the e�ectiveness of dynamic slicing in fault location.

� A novel approach to combine checkpointing with tracing to further improve the

scalability of the fault location framework is presented inchapter 7. Checkpoint-

ing is usually performed in an interval of minutes due to its high overhead while

logging in between checkpoints can be performed with acceptable overhead. In

contrast, tracing techniques can only handle an execution of a few seconds and

therefore they cannot be performed for a long execution interval such as a check-

point interval. An execution fast forwarding technique is proposed to reduce

the log such that tracing becomes feasible for the replayed execution.

2.4 Challenge Two: E�ective Fault Location

The e�ectiveness of dynamic slicing is dependent on the sizeof the computed fault

candidate set, i.e., the size of the dynamic slice. A study was performed to evaluate

the e�ectiveness of dynamic slicing. For the purpose of experimentation, a set of faulty

versions of commonly used programs were collected. This study used real programs

with real bugs that were reported by users of these programs.For programs that

produced an incorrect output value, dynamic slicing was performed starting at the

�rst incorrect output value produced during the failed run. For the programs that

crashed, the value which when referenced caused the crash served as the basis for

computing the dynamic slice. The faulty versions of the programs along with the

descriptions of the faults are given in Table 2.3. The sources of these faulty versions
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are also given. As shown in the table, these programs are widely used. In addition one

should note that the �rst nine faults cause the programs to produce wrong outputs

while the last seven faults contain memory bugs leading to a segmentation error.

Now lets see how dynamic slicing reduces the amount of code the programmer

has to examine to locate faulty code. In Table 2.4,LOC is the lines of code in each

program, Exec represents the lines of code that were actually executed during the

failed run. Slice gives the sizes of the dynamic slices.

From the experimental data presented in Table 2.4, the following observations can

be made:

� Oversized Slices.As shown by Table 2.4, although dynamic slices signi�cantly

reduce the sizes of the fault candidate sets { the sizes of dynamic slices range

from 0.90% to 63.18% of the executed statements while only 1.45% to 15.58% of

code was executed, the raw sizes can still be quite large. Some computed slices

contain over one thousand statements. Therefore, it would be quite tedious to

manually inspect these slices.

� Applicability. Dynamic slicing was not applicable in all the faults studied. For

the �rst four bugs of the grep program, because the failed runs did not produce

any output, which was essentially the misbehavior, erroneous values could not

be identi�ed on which dynamic slices could be computed.

Therefore, the following issues need to be addressed in order to deliver a highly

e�ective fault location system.

Challenge Two: Additional types of dynamic slices must be identi�ed so thatap-

plicability of dynamic slicing can be broadened to wider range of situations. Moreover,

by using di�erent kinds of dynamic slicing in conjunction smaller fault candidate set

must be produced.
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Table 2.3 . Faults used in the study.

Program Bug Description Source

grep 2.5 using -i -o together produces wrong output http://savannah.gnu.org

grep 2.5.1 (a) using -F -w together produces wrong output http://savannah.gnu.org
(b) using -o -n together produces wrong output http://comments.gmane.org/

gmane.comp.gnu.grep.bugs/
(c) "echo dor̂e | grep dor̂e" �nds no match http://comments.gmane.org/

gmane.comp.gnu.grep.bugs/


ex 2.5.31 (a) some variable is not de�ned with option -l, http://soureforge.net
which fails the compilation of xfree86
(b) string "]]" is not allowed in user's code http://soureforge.net
(c) the generated code contains extra #endif http://soureforge.net

make 3.80 (a) backslashes in dependency names are not removed http://savannah.gnu.org
(b) fail to recognize the updated �le status while http://savannah.gnu.org
there are multiple target in the pattern rule

gzip-1.2.4 1024 byte long �lename over
ows into global variable AccMon [91]
ncompress-4.2.4 1024 byte long �lename corrupts stack return address AccMon [91]
polymorph-0.4.0 2048 byte long �lename corrupts stack return address AccMon [91]
tar-1.13.25 wrong loop bounds lead to heap object over
ow AccMon [91]
bc-1.06 misuse of bounds variable corrupts heap objects AccMon [91]
tidy-34132 memory corruption problem AccMon [91]
mutt-1.4.2.1i heap bu�er bound miscalculation http://www.securiteam.com/

Table 2.4 . Sizes of backward dynamic slices.

Program LOC Exec (LOC%) Slice (Exec%)

grep 2.5 8581 1157 (13.48%) -
grep 2.5.1 (a) 8587 509 (5.93%) -
grep 2.5.1 (b) 8587 1123 (13.08%) -
grep 2.5.1 (c) 8587 1338 (15.58%) -

ex 2.5.31 (a) 26754 1871 (6.99%) 695 (37.15%)

ex 2.5.31 (b) 26754 2198 (8.22%) 272 (12.37%)

ex 2.5.31 (c) 26754 2053 (7.67%) 50 (2.44%)
make 3.80 (a) 29978 2277 (7.60%) 981 (43.08%)
make 3.80 (b) 29978 2740 (9.14%) 1290 (47.08%)
gzip-1.2.4 8164 118 (1.45%) 34 (28.81%)
ncompress-4.2.4 1923 59 (3.07%) 18 (30.51%)
polymorph-0.4.0 716 45 (6.29%) 21 (46.67%)
tar-1.13.25 25854 445 (1.72%) 105 (23.60%)
bc-1.06 8288 636 (7.67%) 204 (32.07%)
tidy-34132 31132 1519 (4.88%) 554 (36.47%)
mutt-1.4.2.1 71774 2551 (3.55%) 1052 (41.24%)
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Overview of Solutions:

� Two new types of dynamic slices,forward and bidirectional slices, are introduced

in chapter 4. They greatly compensate for the limitations of thebackward

dynamic slices. A coarse grained reduction on the sizes of fault candidate sets

can be achieved by intersecting multiple types of slices.

� A �ne grained fault candidate set reduction technique usingvalue pro�les is

presented inchapter 6. By looking at the correct output produced in a faulty

run and the values computed during the execution, it can be inferred that many

statement executions in a slice are free of errors such that they can be eliminated

from the fault candidate set.
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Chapter 3

Efficiency of Dependence Profiles

A dynamic slicing algorithm would be cost e�ective if the dynamic dependence graphs

could be compacted so that they are small enough to hold in memory and the design of

the compacted graphs is such that they can be rapidly traversed to compute dynamic

slices. An optimization algorithm is devised to eliminate redundancy from a DDG

to achieve both space and time e�ciency. The algorithm is based upon the following

key ideas.

Sharing a dependence edge across multiple dynamic instance s: In general,

it is not merely su�cient to remember whether a pair of statements was involved in a

dynamic (data or control) dependence. For computing dynamic slices it is also neces-

sary to remember the speci�c execution instances of the statements that are involved.

Conditions are identi�ed under which it is not necessary to remember the execution

instances of statements involved in a dependence. Thus, a single representative edge

can be shared across all dynamic instances of an exercised dependence. In partic-

ular, in these situations there is a one to one correspondence betweenall execution

instances of a pair of statements involved in a dependence because the statements

involved arelocal to the same basic block. In presence ofaliasing, multiple de�nitions

of a variable may reach a use even if the de�nitions and use arelocal to a basic block.

In such situationspartial sharing is possible.

Transformations for increasing sharing: It is possible to construct a trans-

formed dynamic dependence graph in a manner that convertsnon-local dependence

edges across basic blocks intolocal dependence edges and therefore increases the
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amount of sharing. First, in some situationsnon-local def-usedependence edges can

be replaced bylocal use-useedges. Second,non-local def-usedependence edges can be

converted into local def-usedependence edges by performingpath specialization. To

limit the increase in static code size due to path specialization, this transformation is

applied selectively in apro�le guided fashion. In particular, selected intraprocedural

Ball Larus paths are specialized [9].

Removing redundancy labels on non-local edges: There are situations in

which di�erent dependence edges are guaranteed to have identical timestamp pair

labels. Redundant copies of timestamp pairs can thus be discarded.

The experimental evaluation shows that once sharing of edges is achieved, the

number of dynamic dependence edges is reduced to roughly 6% of total dynamic

edges. When the full graph sizes range from 0.8 to 1.95 Gigabytes in size, the corre-

sponding compacted graphs range from 20 to 210 Megabytes in size. Average slicing

times for the algorithm range from 1.74 to 36.25 seconds across the benchmarks stud-

ied while average slicing times of a demand driven algorithmrange from 4.69 to 25.21

minutes.

In the remainder of this chapter, a series of optimizations that reduce the number

of labels that need to be stored in a DDG. Once these optimizations are presented,

it will also become clear that after optimization, the traversal of edges can be carried

out in a much more time e�cient manner.

3.1 Optimizations on Data Dependence (DD) edges

In this section, optimizations on DD edges are discussed. The subgraph constructed

by the DD edges is also referred to asthe dynamic data dependence subgraph(dyn-

DDG). Given an execution instance of a useu < t u > , during dynamic slicing, there is
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a need to �nd the corresponding execution instance of the relevant de�nition d < t d > .

There are two steps to this process: (�ndingd) in general many di�erent de�nitions

may reach the use but it is necessary to �nd the relevant de�nition for u < t u > ; and

(�nding td) even if the relevant de�nition d is known it is needed to �nd the execution

instance ofd, i.e. d < t d > , that computes the value used byu < t u > . While in

general it is necessary to remember all dynamic instances ofall dependences, next it

is shown that all dynamic instances need not be remembered explicitly. It is possible

to infer some of the dynamic data dependences and their timestamps.

3.1.1 (OPT-1) Infer

(OPT-1a) Infer Local Def-Use for Full Elimination. Consider a de�nition d

and a useu that are local to the same basic block,d appears beforeu, and there is

no de�nition between d and u that can ever preventd from reachingu. In this case

there is a one-to-one correspondence between execution instances ofd and u. Sinced

and u belong to the same basic block, the timestamps of corresponding instances are

always the same, i.e. given a dynamic data dependence (d ! u) < t d; tu > it is always

the case thattd = tu. Therefore, given the use instanceu < t u > , the corresponding

d is known statically and the corresponding execution instance is simplyd < t d > .

Thus there is no need to remember dynamic instances individually { it is enough to

introduce a static edge fromu to d.

As mentioned earlier, in the plain WET representation, the dynamic dependence

graph is collected by starting with a set of nodes (basic blocks) and then introducing

all dependence edges dynamically. To take advantage of the above optimization an

edge is simply introduced fromu to d statically prior to program execution. No new

information will be collected or added at runtime for the useu as the edge fromu to d

does not need any timestamp labels. In other words all dynamic instances of def-use

edge fromu to d are statically replaced by a single shared representative edge.

The impact of this optimization is illustrated using the example in Figure 3.1.
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As shown in Figure 3.1, basic block 1 contains a labeled localdef-use edge which is

replaced by a static edge that need not be labeled by this optimization. Static edges

are depicted as dashed edges to distinguish them from dynamic edges.
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Figure 3.1 . E�ect of applying OPT-1a.

(OPT-1b) Infer Local Def-Use for Partial Elimination. In the above opti-

mization it was important that certain subpath was free of de�nitions of the variable

involved (sayv) so that a dependence edge involvingv that is free of labels could be

used. In programs with pointers, the presence of a de�nitionof a may aliasof v may

prevent us from applying the optimization even though at runtime this de�nition may

rarely rede�ne v. To enable the application of preceding optimization in presence of

de�nitions of may aliases ofv we proceed as follows. A static unlabeled edge is intro-

duced from one de�nition to its potential use. If at runtime another may alias turns

out to truly refer to v, additional dynamic edges labeled with timestamp pairs will

be added. The e�ect of this optimization is that the timestamp labels corresponding

to the statically introduced data dependence are eliminated while the labels for the
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dynamically introduced data dependence edge are not, i.e. labels have beenpartially

eliminated.

During traversal, �rst the labels on dynamic edges are examined to locate the

relevant dependence. If the relevant dependence is not found, then it must be the

case that the dependence involved corresponds to the staticedge which can then be

traversed. It should also be clear that greater bene�ts willresult from this optimiza-

tion if the edge being converted to an unlabeled edge is the more frequently exercised

dependence edge. Thus, ifpro�le data is available it can be used in applying this

optimization.

In the example shown in Figure 3.2 let us assume that� P is a may alias ofX

and � Q is a may alias ofY. Further assume that the code fragment is executed twice

resulting in the introduction of the following labeled dynamic edges: between the uses

of X and de�nitions of X and � P; and between the uses ofY and the de�nitions of

Y and � Q. The following static unlabeled edges are introduced: fromthe use ofX

to the de�nition of X (as in OPT-1a); and later the use ofY to the earlier use ofY

(as in OPT-2b described later). The dynamic edges introduced are: from the use of

X to the de�nition of � P; and from the later use ofY to the de�nition of � Q. Thus

some, but not all, labels have been removed.
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Figure 3.2 . E�ect of applying OPT-1b.
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3.1.2 (OPT-2) Transform

(OPT-2a) Transform Local Def-Use for Full Elimination. While the above

optimization was able to achieve partial elimination of labels, next an optimization is

presented that can eliminate all of the labels present in situations with aliasing. Full

elimination of labels is achieved throughspecialization. Given a use of variablev in

a node (basic block) that is reachable by two distinct de�nitions (sayd1 and d2) that

may de�ne v, two copies of the node are created. One copy is used to exclusively

represent dynamic dependences betweend1 and the use ofv while the other copy is

used to represent only the dynamic dependences betweend2 and use ofv. Since in

each copy of the node the use ofv is always data dependent upon the same de�nition

point of v, the timestamp labels on these edges do not need to be maintained.
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Figure 3.3 . E�ect of applying OPT-2a.

Consider the example shown in Figure 3.3. One use ofX is reached by the

de�nition of X in statement X = f (Y) while the second use ofX is reached by the

de�nition of X in statement � P = g(Z ). By making two copies of the basic block that

contains the two de�nitions and the use, static edges can be introduced to represent

both of the above dependences and thus the labels corresponding to these edges are

eliminated. Note that the dependence edges corresponding to the uses ofY and Z in

the basic block must also be replicated and appropriately labeled.

In the above example, two copies of the node were su�cient to eliminate the
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local labels. In general, if uses of multiple variables havemultiple de�nitions due to

aliasing, greater number of copies will be required to be created to eliminate all of

the local labels. If the list of labels is very long, node replication may be justi�ed.

However, if there are only few labels, partial elimination may be preferable to full

elimination.

Since the above optimizations show that timestamp labels onlocal dependences

edges can be eliminated, optimizations that convert non-local dependence edges into

local dependence edges are further developed. Once non-local dependence edges have

been converted to local dependence edges, their labels can be eliminated using the

above optimizations.

(OPT-2b) Transform Non-Local Def-Use to Local Use-Use. Consider two

usesu1 and u2 such that u1 and u2 are local to the same basic block,u1 and u2 always

refer to the same location during any execution of the basic block, and there is no

de�nition between u1 and u2 that can cause the uses to see di�erent values. Now let

us assume that a non-local de�nitiond reaches the usesu1 and u2. In this case each

time u1 and u2 are executed, two non-local def-use edges (d ! u1) < t d; tu1 > and

(d ! u2) < t d; tu2 > are introduced. Letu1 appear beforeu2. The non-local def-use

edge (d ! u2) < t d; tu2 ) can be replaced by a local use-use edgeu1 ! u2. The latter

does not require a timestamp label becausetu1 is always equal totu2 . By replacing

a non-local def-use edge by a local use-use edge, labels on the edge are eliminated.

During slicing an extra edge (the use-use edge) will be traversed. Moreover, use-use

edges are treated di�erently. In particular, a statement visited by traversing a use-use

edge is not included in the dynamic slice.

Using static analysis one can identify uses local to basic blocks which always

share the same reaching de�nition. Once having identi�ed these uses, use-use edges

are statically introduced from later uses to the earliest use in the basic blocks. After

having introduced these edges, there will not be any need to collect or introduce any
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dynamic information corresponding to the later uses.

The impact of this optimization is illustrated by further optimizing the dyDDG

obtained by applying OPT-1a. As shown in Figure 3.4, basic block 2 contains a two

uses ofX each having the same reaching de�nition from block 1. The labeled non-

local def-use edge from the second use to the de�nition is replaced by an unlabeled

static use-use edge by this optimization. A use-use edge is represented by a dashed

edge to indicate it is static and further indicate that it is ause-use edge.
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Figure 3.4 . E�ect of applying OPT-2b.

(OPT-2c) Transform Non-Local Def-Use to Local Def-Use. Given non-local

def-use edge (d ! u) < t d; tu > between basic blocksbd and bu , by creating a

specialized node for thepath (say p) that when executedalways establishesthe def-

use edge (d ! u) < t d; tu > (i.e., d cannot be killed alongp prior to reaching u), this

non-local dynamic edge can be converted into a local dynamicedge (d ! u) < t 0
d; t0

u >

for path p. While for the original edge (d ! u) < t d; tu > the values oftd and tu
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are not equal, for the modi�ed edge (d ! u) < t 0
d; t0

u > the values oft0
d and t0

u are

equal. At runtime if the dependence betweend and u is established along pathp,

then that dependence would be represented by an unlabeled edge local to node for

path p. However, if the dependence is established along some path other than p, it is

represented using a labeled non-local edge betweenbd and bu.

The consequence of earlier optimizations was that the initial graph contains some

statically introduced data dependence edges. The consequence of this optimization is

that instead of containing only basic block nodes, the graphcontains additional nodes

corresponding to paths that have been specialized. During execution it must be de-

tected when specialized paths are executed (an algorithm todo so is presented later).

This is necessary for construction of the DDG due to the following reasons. The value

of global timestamps must be incremented after the execution of code corresponding

to a node in the graph. Thus, the timestamp will no longer be incremented each

time a basic block is executed because nodes representing specialized paths contain

multiple basic blocks. At runtime the system must distinguish between executions of

a block that correspond to its appearance in a specialized path from the rest of its

executions so that when a dynamic data dependence edge is introduced in the graph

it is known which copy of the block to consider.

The impact of this optimization is illustrated by further optimizing the optimized

dyDDG from Figure 3.4. As shown in Figure 3.5, if a specialized node is created

for path along basic blocks 1, 2 and 4, many of the previously dynamic non-local

def-use edges are converted to dynamic local def-use edges within this path. The

def-use edges established along this path can now be statically introduced within the

statically created node representing this path. Thus, the timestamp labels for these

def-use edges are no longer required. Since block 2 can only be executed when path

1-2-4 is executed, it is not needed to maintain a separate node for 2 once node for path

1-2-4 has been created. However, the same is not true for blocks 1 and 4. Therefore

nodes representing them are maintained to capture dynamic dependences that are
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Figure 3.5 . E�ect of applying OPT-2c.

exercised when path 1-2-4 is not followed.

After applying multiple optimizations to the dyDDG of Figur e 3.1(a), all but one

of the labels in the dyDDG have been eliminated. In fact this label can also be

eliminated by creating another specialized node for path containing blocks 3 and 4.

Finally it should be noted that the above optimization only eliminates labels cor-

responding to dependence instances exercised along the path for which a specialized

node is created. Thus, greater bene�ts will be derived if thepath specialized is afre-

quently executed path. As a result, selection of paths for specialization can be based

upon pro�le data.

3.1.3 (OPT-3) Redundancy Across Non-Local Def-Use Edges

In all the optimizations considered so far, situations havebeen identi�ed and created

in which the labels were guaranteed to have a pair of identical timestamps. Now an

optimization is presented which identi�es pairs of dynamicedges between di�erent

statements that are guaranteed to have identical labels in all executions. Thus, the
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statements can be clustered so that they can share the same edge and thus a single

copy of the list of labels. Given basic blocksbd and bu such that de�nitions d1 and

d2 in bd have corresponding usesu1 and u2 in bu . If it is guaranteed that along every

path from bd to bu either both d1 and d2 will reach u1 and u2 or neither d1 nor d2 will

reachu1 and u2, then the labels on the def-use edgesd1 ! u1 and d2 ! u2 will always

be identical. The example in Figure 3.6 shows that the uses ofY and X always get

their de�nitions from the same block and thus dependence edges for Y and X can

share the labels. A shared edge between clusters of statements (shown by dashed

boxes) is introduced by this optimization.
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Figure 3.6 . E�ect of applying OPT-3.

3.2 Optimizations on Control Dependence Edges

Control dependences are introduced at the granularity of basic blocks. Next the

optimizations that enable introduction of static unlabeled control dependence edges

are presented. The subgraph of a DDG which consists of only control dependence

edges is also referred to the dynamic control dependence graph (dyCDG).

3.2.1 (OPT-4) Infer Fixed Distance Unique Control Ancestor .

Often basic blocks (nodes) in a control 
ow graph have a unique control ancestor.

Whenever a node is control dependent upon a unique conditional predicate, the con-
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trol dependence edge can be introduced statically. In addition, sometimes the di�er-

ence in the timestamps corresponding to a dynamic control dependence is a compile

time constant. Thus, the di�erence value can be remembered and labeling the edge

with a timestamp pair can be avoided each time the dependenceis exercised. In par-

ticular, for a dynamic control dependence edge (c ! d) < t c; td > which satis�es the

above conditions,tc + � = td because timestamp is incremented by� whenever after

the execution of the predicate when control transfers to thedependent basic block.

When this optimization is applied to the example from Figure3.7, the � values of

edges from node 2 to node 1 and node 4 to node 2 are determined tobe the value 1.
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Figure 3.7 . E�ect of applying OPT-4.

3.2.2 (OPT-5) Transform

(OPT-5a) Transform Multiple Control Ancestors If a node has multiple con-

trol ancestors, the node creating specialized copies can bereplicated for each of the

control ancestors. Static control dependence edges can nowbe introduced and their

� values can be remembered. The dynamic timestamp labels are no longer required.

Continuing with the example from Figure 3.7, the labeled edges corresponding to the
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two control ancestors of node 3 can be replaced by static edges after replicating 3 as

shown in Figure 3.8.
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Figure 3.8 . E�ect of applying OPT-5a.

Specialization also enables another optimization for control dependences which

is analogous to OPT-2b. Following specialization, a node representing a path may

contain multiple basic blocks that are control equivalent [28]. Instead of using separate

non-local edges for two control equivalent blocks, the non-local edge for the second

block can be replaced by a local edge which points to the �rst block.

(OPT-5b) Transform Varying Distance Unique Control Ancest or. In opti-

mization OPT-4 it had been shown how to handle the case when a node had a unique

control ancestor which was at a constant distance from the node. It is possible that

there are multiple paths from the control ancestor to the control dependent node caus-

ing the former to be at varying distances from the latter depending upon the path

taken. In this case specialization can be applied to create copies of the dependent

node such that each copy created is at a constant distance from the control ancestor.

In Figure 3.9, node 4 is at distance 3 from node 1 along path 1.2.3.4 and at
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Figure 3.9 . E�ect of applying OPT-5b.

distance 2 from node 1 along path 1.2.4. By specializing path1.2.3.4 as shown in the

�gure the control dependence edge from 4 to 1 can be convertedinto a pair of control

dependence edges that are each at constant distances of 2 and0.
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Figure 3.10 . E�ect of applying OPT-6.

3.2.3 (OPT-6) Redundancy Across Non-Local Def-Use and Cont rol De-

pendence Edges

In OPT-3 it was shown how two non-local data dependence edgescan share common

labels. The same approach can be extended to allow a non-local control dependence

edge to share labels with a non-local data dependence edge aslong as these edges

connect the same pair of blocks. An example illustrating this optimization is shown

in Figure 3.10.
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3.2.4 Completeness of the Optimization Set

In an unoptimized DDG any dependence edge may have a long listof labels attached

to it. To compact the graph it is desirable to apply transformations that can eliminate

this list of labels. Given this requirement, it is important that an optimization (or

a series of optimizations) is available that can eliminate any list of labels. A set

of optimizations can be considered to becompleteif for any given list of labels, a

sequence of optimizations can be found in the optimization set that can be used to

eliminate the list of labels. The completenessproperty of the optimization set is

important because it indicates that there are su�cient optimizations and it is not

needed to continue developing additional ones. In fact given an optimization set that

is complete, it is possible to convert any DDG into one which has no timestamp pair

labels.

[Theorem] (Completeness). The set of optimizations OPT-1 through OPT-6

is complete.

[Proof] There are two types of edges in the DDG, data dependence and control

dependence. Lets us consider each of the edge types and show that a list of labels

associated with an edge can be eliminated using the optimizations described.

(1)Data dependence labels.(Local Edge) If the labels are associated with an edge

that is local to a basic block the labels can be always removedbecause either they can

be inferred and hence OPT-1a is applicable or they can beentirely convertedto labels

that can be inferred by carrying out specialization using OPT-2a. (Non-local Edge) If

the labels are associated with an edge that is non-local, i.e. it connects two di�erent

basic blocks, then it can always beconverted into a local edgeby applying path

specialization using OPT-2c. Once it has been converted to alocal edge, its labels can

always be eliminated as described above. Thus, it is concluded that labels associated

with all data dependence edges can be eliminated by using theoptimizations provided.

(2)Control dependence labels.(Fixed Distance from Unique Ancestor) If a node is
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at a �xed distance from its control ancestor, then the labelscan beinferred and hence

optimization OPT-4 is applicable. (Others) If the node has multiple control ancestors

and/or it is at a varying distance from its control ancestors, then path specialization

using optimizations OPT-5a and OPT-5b can always be appliedto convert the labels

into ones that can be inferred. Thus, it is concluded that labels associated with all

control dependence edges can be eliminated using the optimizations provided.

From (1) and (2) it is concluded that the optimization set iscomplete. 2

It is worth noting that in the above proof no reference was made to optimizations

OPT-1b, OPT-2b, OPT-3, and OPT-6. These optimizations are not needed for com-

pleteness. They are provided as cheaper alternatives to specialization in situation

where they may be found to be applicable.

3.3 DDG Construction and Dynamic Slicing

In this section, the construction of a DDG and how to perform dynamic slicing on

the DDG are discussed. First, lets discuss how a DDG is generated. In light of the

previous discussions, this procedure consists of two steps: in the �rst step a static

graph is constructed, which is transformed from a plain control 
ow graph as discussed

in the WET representation, and in the second step dynamic information is labeled

on the static edges.

Static Component of DDG. To construct the static component of DDG it is

needed to perform the following analyses: (i)reaching de�nitions analysis is carried

out to compute def-useinformation. May alias information is needed to carry out

this analysis; (ii) reaching usesanalysis is carried out to computeuse-useinformation;

(iii) simultaneous reachabilityanalysis is carried out to identify situations in which

a pair of non-local data dependence edges canshare labels; and (iv) postdominator
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analysisis carried out to computecontrol dependences[28]; and (v) must reachability

analysis is carried out to identify situations in which a pair of non-local data and

control dependence edges canshare labels.

Except for simultaneous reachabilityanalysis all other analyses are standard.

Therefore next the details of the simultaneous reachability analysis will be described.

Given a pair of de�nitions d1 and d2 in block s, with corresponding usesu1 and u2

in block d, the edgesd1 ! u1 and d2 ! u2 will share identical labels if and only if

whenevers and then d are executed either both data dependences are exercised or

neither of them are exercised. The subgraph consisting ofs, d, and all nodes along

paths from s to d is considered. The set of nodes in this subgraph excludings is

referred to asreach(sd). KILL n is a two bit value where bits correspond to the

two de�nitions; bit value of 1 indicates that n does not kill the de�nition while 0

indicates that n kills the de�nition. The following equations compute for each node

in reach(sd) a data 
ow value which is � f 11; 10; 01; 00g.

8n 2 succ(s)
T

reach(sd); xn = f 11g

8n 2 reach(sd) � succ(s);

xn =
S

p2 pred(n)\ reach(sd)
f KILL p ^ x : x 2 xpg

If the solution for node d is f 11g (i.e., both de�nitions always reachd) or f 11; 00g

(either both de�nitions reach d or neither reachesd), then the two dependence edges

will always have identical labels. On the other hand, if the solution contains 10 (01),

then there is a path froms to d along which d1 (d2) reachesd but d2 (d1) does not

reachd. This analysis does not need to be carried out for every pair of de�nitions but

rather for those that appear in the same basic block and have corresponding uses in

the same basic block. Moreover, transitivity can be used to further reduce the pairs

considered (i.e, if (d1 ! u1; d2 ! u2) can share labels and (d2 ! u2; d3 ! u3) can
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share labels, then so can (d1 ! u1; d3 ! u3)).

Given the results of the above analyses, enough informationis available to con-

struct the static component of DDG. However, it is observed that the static compo-

nent of DDG must be constructed once and then used repeatedlyto capture dynamic

dependence histories of di�erent program runs. In other words the optimizations

must be applied to construct the static component. While many of the optimizations

can be applied for every opportunity that exists, there is a subset of optimizations

that must be applied selectively. In particular, all of the specialization based opti-

mizations should be applied only if it is expected that theirapplication will result in

more compaction than the graph expansion that is caused by specialization. There-

fore these optimizations should be applied in a pro�le guided fashion. All Ball Larus

paths [9] having a non-zero frequency during a pro�ling run were specialized. This

approach works well because nearly all of the optimizationsrequiring specialization,

are actually based upon path specialization. There are two optimizations that require

data dependence pro�les { OPT-1b and OPT-2a. The implementation does not make

use of data dependence pro�les yet. Instead OPT-1b was applied such that data de-

pendence edges created due to must aliases were given priority for partial elimination

over edges due to may aliases. OPT-2a is not applied because an e�ective static

heuristic is not available to do so.

Dynamic Component of DDG. As the program executes, it sends a trace of

one basic block at a time to an online algorithm which builds the DDG. This online

algorithm must carry out two tasks. First it must bu�er the ba sic block traces until

it is determined which node in the static DDG must be augmented with additional

dynamic edges. This is necessary because there may be multiple copies of a basic

block due to specialization. Second it maintains the timestamp value and uses it to

create the labels corresponding to the dynamic edges.

Consider the example shown in Figure 3.11. Let us assume thatfor the CFG
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shown the static graph constructed has nodes for each of the basic blocks and another

node for path 1245 is created due to specialization. When theprogram executes and

generates a trace for block 1, at this time dependence edges can not be introduced

for statements in 1 because it is not known where to introducethese edges { in copy

of statements of 1 in node 1 or node 1245. The trace must be bu�ered till it is clear

that either the program has followed path 1245 or that it has taken some other path.

To detect when it is the right time to introduce edges the treecan be constructed

as shown in Figure. 3.11(c). The online algorithm is initially at the root of the tree.

Depending upon the basic block executed, the appropriate edge labeled with that

block is traversed and the trace is bu�ered. When a leaf is reached, it is time to

process the bu�ered trace. The leaf is labeled with the list of nodes in the DDG from

which the edges introduced will originate. For example if basic blocks 1, 2, 4, and

5 are executed the edges originate from node 1245 while if blocks 1, 2, 4, and 6 are

executed the edges originate from nodes 1, 2, 4, and 6.

2,4

1

2 3

4

5 6
5
6

1245
1
2
3
4

(a) CFG (b) Nodes (c) Find and update tree.

3 4
5

6

3

1

5 6

2

1245 1,2,4,6

1,3

2
3

4
5

6

Figure 3.11 . Introducing dynamic edges.

Dynamic Slicing. During the computation of a dynamic slice, the DDG is tra-

versed backwards to identify the statements that belong to the slice. The set of

dependence edgesEs going backwards from a statements can be partitioned into

subsets of edgesEus corresponding to each useus and subset of edgesEcs corre-
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sponding to all control ancestors ofs. In other words, Es =
S

8us

Eus

S
Ecs . Given

an execution instance ofs, say s < t s > , for each subset of edges corresponding to

a dependence inEs (i.e., Eus or Ecs ), it is needed to locate the speci�c edges0s in

Es that must be followed. Moreover, since the edges0 ! s may have been exercised

many times, the speci�c dynamic instance of this edge (s0 ! s) < t s0; ts > that is

involved in the dependence must be identi�ed.

(b)

s'

s

l'''l''

s

s'''s''

s

s' s'' s'''

l'''l''

(a) (c)

Figure 3.12 . Traversing dependence edges.

There are three situations that arise as shown in Figure 3.12. Let us say a subset of

edgesEd(s) from Es are being considered due to a dependenced involving s (i.e., Ed(s)

corresponds to someEus or Ecs ). In the �rst case, Ed(s) contains a single static edge

s0 ! s which is thus not labeled dynamically with timestamp pairs.The traversal is

straightforward as there is only one choice and the timestamp ts0 in (s0 ! s) < t s0; ts >

can be easily determined (ts0 = ts for data dependences andts0 = ts � � for control

dependences). In the second case there are multiple dynamicand thus labeled edges

(say s00! s and s000! s). The labels on these edges (l00and l000) must be searched to

locate the relevant edge and its instance { (s00! s) < t s00; ts > or (s000! s) < t s000; ts > .

In the third case, there is a single unlabeled static edges0 ! s as well as multiple

labeled dynamic edges (says00! s and s000! s). The labels ons00! s and s000! s

(i.e., l00and l000) are �rst searched. If the relevant dependence (s00! s) < t s00; ts > or

(s000! s) < t s000; ts > is found, it is done; otherwise the static edges0 ! s is selected

and the value of timestampts0 in (s0 ! s) < t s0; ts > is computed as discussed in the
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�rst case.

It is worth noting that removal of explicit timestamps, as iscarried out by the series

of optimizations developed, not only makes the dependence graph more compact, it

also speeds up the traversal process as fewer timestamps aresearched to locate the

relevant timestamp. The �rst and third cases contain a static unlabeled edge and

hence the search is reduced while the second case representsthe situation in which no

reduction in search is achieved as all dynamic labels are saved and hence potentially

searched.

The key points of the traversal process have been described.Now the dynamic

slicing algorithm is summarized. In order to enable computation of slices, for each

variable v the triple is maintained < s; n; t s > such that v was last de�ned by state-

ment s in node n at time ts. The dynamic slice forv is computed as shown below.

Notice the manipulation of timestamps for unlabeled edges and also note that ifs0 ! s

is a uu-edge thens0 is not added to the slice. The sharing of labels between di�erent

edges is not explicitly re
ected in the algorithm below since it is an implementation

detail which a�ects how the timestamp labels on edges are accessed. In the algorithm

below, sSlice(s < t s > ) represents the set of statements that belong to the dynamic

slice of execution instances < t s > and eSlice(E; t s) represents the subset of state-

ments in the dynamic slice of execution instances < t s > that are contributed by the

traversal of the subset of dynamic edgesE from s < t s > .

BwS(v) = f sg
[

sSlice(s < t s > )

sSlice(s < t s > ) =

8
>>>>>><

>>>>>>:

if E s =
S

8us

Eus

S
Ecs 6= � then

S

8us

eSlice(Eus ; ts)
S

eSlice(Ecs ; ts)

else
�

endif
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eSlice(E; t s) =

8
>>>>>>>>>><

>>>>>>>>>>:

if 9 labeled edge(s0 ! s) < t s0; ts > 2 E then
sSlice(s0 < t 0

s > )
S

f s0g
elseif 9 unlabeled edge s0 ! s 2 E then

case s0s is :
du edge: sSlice(s0 < t s > )

S
f s0g

uu edge: sSlice(s0 < t s > )
cd edge: sSlice(s0 < t s � � s0! s > )

S
f s0g

endif

� � ������	

� 
 ����
��	

� � ��������

��
������	
������	

�� 
 �

Figure 3.13 . Using shortcuts.

Using Shortcuts to Speed Up Traversal. Finally, an optimization is presented

that is used to speed up the traversal of the DDG by the above slicing algorithm. As

shown, the optimized algorithm introduces some dependenceedges statically while

others are introduced dynamically. It is possible that at some points in the DDG

multiple edges are traversed in sequence that are all staticedges. If this is the case,

the contributions to the dynamic slice when these edges are traversed is also known

statically and always the same. Therefore, to speed up traversal of these edges, a

shortcut edge is introduced that replaces the traversal of multiple static dependence

edges by the traversal of a single shortcut edge. The edge is labeled with the set of

statements that are skipped by the shortcut edge so that the dynamic slice can be

appropriately updated when the shortcut edge is traversed.In the example shown
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in Figure 3.13, corresponding to the sequence of two static edgesS3 ! S2 ! S1, a

shortcut edgeS3 ! S1 labeled with f S2g is introduced.

3.4 Experimental Results

The algorithm described has been implemented using theTrimaran compiler infras-

tructure which handles programs written inC. The experiments were performed on

the same set of SPECInt benchmarks. The goal of the experiments was to essentially

determine the space and time costs of the proposed dynamic slicing algorithm which

is also referred to as OPT. It is also compared with the demanddriven algorithm

discussed in chapter 2.

3.4.1 Performance Evaluation of OPT

Graph sizes. The size of each full dynamic dependence graph is measured and

it is compared with the size of the corresponding optimized graph obtained after

application of all the optimizations described in this paper. These graph sizes are

shown in Table 3.1. As shown in the table, the graphs sizes arereduced by factors

ranging from 7.46 to 93.40. As a result, while the full graph sizes range in size from

0.8 to 1.95 Gigabytes, the optimized graphs range from 20 to 210 Megabytes in size.
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Figure 3.14 . E�ect of various optimizations on DDG size.
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Table 3.1 . DDG size reduction.

Program Exec. (Millions) Graph Size (Megabytes) Reduction
Before After Factor

300.twolf 140 1568.44 210.21 7.46
256.bzip2 67 1296.14 50.48 25.68
255.vortex 108 1442.66 64.81 22.26
197.parser 123 1816.95 69.81 26.03
181.mcf 118 1535.84 170.29 9.02
164.gzip 71 834.74 51.57 16.19
134.perl 220 1954.40 20.92 93.40
130.li 123 1745.72 96.50 18.09
126.gcc 131 1534.37 74.71 20.54
099.go 138 1707.36 131.24 13.01

The substantial reduction in the graph size is due to the factthat roughly only

6% of the dynamic dependences are explicitly maintained after the proposed opti-

mizations are applied. The contributions of the various optimizations in reducing the

graph size are shown in Figure 3.14. Here 100% corresponds tothe full graph size and

dyn corresponds to the size of the graph after application of allthe optimizations.

The other points in the bar graph show how the size reduces as the optimizations are

applied one by one. As illustrated, OPT-1 is very e�ective asit reduces graph sizes to

roughly 35% of the full graph size. However, the other optimizations also contribute

signi�cantly as they together reduce the graph size from 35%to 6% of the full graph

size. It is important to point out that the distribution obta ined is dependent upon

the order in which the optimizations are applied since some cases can be handled by

multiple optimizations.

It is observed that the majority of the savings comes from applying optimizations

for dynamic data dependence edges. This is because the dynamic control dependences

represent a small fraction of information contained in DDG (see the �rst graph in

Figure 3.15). This is not surprising because control dependence edges are introduced

at basic block granularity while data dependence edges haveto be introduced at
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Relative sizes of dyCDG and dyDDG
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Figure 3.15 . dyDDG vs. dyCDG size reduction.
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statement granularity. The second and third graphs in Figure 3.15 separately show the

reductions in the sizes of dyDDG and dyCDG due to the application of optimizations.

The contributions of the individual optimizations is further breakdowned. Note that

the second graph in Figure 3.15 does not include OPT-2a because it was never applied.

Execution times. The next step is to analyze the slicing times of the proposed

algorithm. To carry out this study multiple program slices were computed at various

points during the execution of each program. The reason why multiple slices were

computed is that depending upon the memory address or variable chosen, the slicing

times can vary. The reason why slicing was carried out at di�erent points during

execution is that the change in slicing times was wanted as the size of the DDG

grows. Moreover this scenario also represents a realistic use of slicing { the user may

want to compute slices at di�erent execution points.

The results of this study are presented in Figure 3.16. In this graph each point

corresponds to average slicing time for 25 slices. For each benchmark 25 new slices

were computed after execution interval of 15 million statements { these slices corre-

sponded to 25 distinct memory references. Following each execution interval slices

were computed for memory addresses that had been de�ned since the last execution

interval { this was done to avoid repeated computation of same slices during the ex-

periment. As shown in the �gure, the increase in slicing times is linear with respect to

number of statements executed. More importantly the slicing times are very promis-

ing. For 8 out of 10 benchmarks the average slicing time for 25slices computed at

the end of the run is below 18 seconds. The only exception is300.twolf for which

average slicing time at the end of the program run is roughly 36 seconds. It is worth

noting that the optimizations did not reduce the graph size for this program as much

as many of the other benchmarks. Finally, at earlier points during program runs the

slicing times are even lower.

The above experiment was also performed without making use of the shortcut
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Figure 3.16 . Dynamic slicing times of OPT.

edges in the DDG. The average slicing times at the end of the program run with and

without making use of shortcuts are given in Table 3.2. In 8 out of 10 benchmarks,

by making use of shortcuts, the average slicing time is cut bymore than half. Thus,

this is an important optimization.

Finally, let us consider the cost of generating the DDGs so that dynamic slicing

can be performed. The implementation performs DDG construction in two steps.

First instrumented programs are run to collectexecution traces(control 
ow and

data address traces). In the Trimaran environment, the execution of the program

slows down roughly by a factor of two when traces are generated. Second execution

traces arepreprocessedto generate DDGs. The preprocessing times are shown in

Table 3.3.

3.4.2 Comparison with Other Algorithms

The performance of OPT is also compared with thedemand driven(DD) algorithm

and the traditional dynamic slicing algorithm based on unoptimized DDGs (BAS).

The DD algorithm was found to be the best overall in [86] as it does not run out of

memory for reasonably long program runs. The traditional BAS algorithm runs out

of memory for long program runs. However, in order to be able to successfully run
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Table 3.2 . Bene�t of providing shortcuts.

Program OPT slicing Times (seconds) Ratio
w/o shortcuts with shortcuts w/o / with

300.twolf 68.01 36.25 1.88
256.bzip2 6.14 2.10 2.92
255.vortex 5.57 1.92 2.90
197.parser 4.86 2.21 2.20
181.mcf 22.05 17.10 1.29
164.gzip 4.54 1.74 2.61
134.perl 12.59 4.05 3.11
130.li 15.65 6.09 2.57
126.gcc 9.76 3.80 2.57
099.go 26.85 11.36 2.36

Table 3.3 . Preprocessing time for OPT.

Program Preprocessing Program Preprocessing
Time (Minutes) Time (Minutes)

300.twolf 65.29 256.bzip2 38.36
255.vortex 44.46 197.parser 44.06
181.mcf 53.64 164.gzip 23.52
134.perl 51.12 130.li 49.88
126.gcc 48.83 099.go 35.24
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BAS, a machine with 2 Gigabyte RAM was used which was su�cientto accommodate

the original DDGs for all but one program run (134.perl ).

The cumulative slicing times for computing up to 25 slices atthe end of the

program run for the two algorithms are plotted in Figure 3.17. As one can see,

the DD algorithm is much slower than the proposed algorithm.Computing each

new slice using DD on an average takes 4.69 to 25.21 minutes depending upon the

benchmark while computing the same slice using the optimized algorithm OPT takes

1.74 to 36.35 seconds. The DD algorithm spends a great deal oftime traversing the

execution trace stored on disk during each slice computation. The point at which

the curves intersect the y-axis represents the preprocessing time { for the proposed

algorithm this is the time for building the DDG while for the DD algorithm this is

the time for preprocessing the execution trace to enable faster traversal of the trace

as described in [86]. The exact preprocessing times are given in Table 3.4. As one

can see, while the preprocessing time of the proposed OPT algorithm is higher, the

di�erence is comparable to the time spent on computing a few slices using the DD

algorithm.

The memory needed by the OPT and DD algorithms is given in Table 3.5. While

the memory used by the OPT algorithm is the size of reduced DDG, the memory

used by DD is the size of the DDG subgraph corresponding to a slicing request. Since

the latter varies with slicing requests, the largest DDG subgraph size constructed

in response to 25 distinct slicing requests is presented. Note that in 5 out of 10

benchmarks the size of the largest DDG subgraph built by DD isgreater than the full

reduced DDG built by OPT. It is clear from this data that on average, the memory

needs of DD and OPT are comparable to each other.

Therefore, based upon the above results it can be concluded that OPT is superior

to DD because it is much faster than DD and at the same time it uses roughly the

same amount of memory as DD.
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Figure 3.17 . Comparison of OPT with DD and BAS.
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BAS versus OPT. As mentioned earlier, BAS runs out of memory for reasonably

long program runs. Fortunately, the slicing times of the OPTalgorithm can be

compared to that of the BAS algorithm in situations where theprogram run was

short enough to enable the entire (unoptimized) dynamic dependence graph to be

kept in memory. BAS was able to successfully run on a machine with 2 Gigabyte

RAM for all programs except134.perl .

The slicing times of BAS and OPT are compared in Table 3.6. It is observed that

OPT is faster than BAS. This is because of the use of shortcut edges that speed up

the traversal of the DDG. The same optimization cannot be applied to BAS because

the unoptimized DDG only contains dynamic edges. The di�erence between OPT

slicing times and BAS slicing times are caused by shortcuts because when the slicing

times of OPT without shortcuts (given earlier in Table 3.2) is compared with slicing

time of BAS given below, they are quite close.

Finally the preprocessing times of OPT and BAS are compared.It had been

expected that the preprocessing times for OPT would be higher than BAS because

the OPT algorithm must spend some extra time for checking whether the timestamp

pairs of all exercised dependences should be added to the DDGor not. However, the

experiments show otherwise. As the data in Table 3.7 shows, the preprocessing times

for the BAS algorithm are consistently higher than those forOPT. The reason for

this behavior is that the list of timestamp pairs that are associated with a dependence

edge often grow very large and thus resizing of the array in which these are stored

must often be performed. These memory reallocation operations take up signi�cant

amount of time in BAS while in OPT this is not the case. Thus, the overall e�ect of

this behavior is that the preprocessing times of OPT are lower than that of BAS.

Therefore, based upon the above results one can say that OPT is superior to

BAS not only because it scales to longer program runs, but also because it has lower

preprocessing and slicing times.



64

Table 3.4 . Preprocessing time: DD vs. OPT.

Program Preprocessing Time (Minutes) Ratio
OPT DD DD/OPT

300.twolf 65.29 14.54 0.22
256.bzip2 38.36 9.38 0.25
255.vortex 44.46 16.35 0.37
197.parser 44.06 16.23 0.37
181.mcf 53.64 16.64 0.31
164.gzip 23.52 14.56 0.62
134.perl 51.12 17.18 0.34
130.li 49.88 19.23 0.39
126.gcc 48.83 26.65 0.55
099.go 35.24 17.06 0.48

Table 3.5 . DDG graph sizes: DD vs. OPT.

Program Graph Size (Megabytes)
OPT DD (Max. of 25 slices)

300.twolf 210.21 296.06
256.bzip2 50.48 80.66
255.vortex 64.81 33.60
197.parser 69.81 40.04
181.mcf 170.29 113.74
164.gzip 51.57 34.75
134.perl 20.92 53.62
130.li 96.50 105.45
126.gcc 74.71 57.70
099.go 131.24 162.28

Table 3.6 . Slicing times: BAS vs. OPT.

Program Slicing Times (seconds)
BAS OPT

300.twolf 65.99 36.25
256.bzip2 5.92 2.10
255.vortex 6.17 1.92
197.parser 5.28 2.21
181.mcf 21.71 17.10
164.gzip 4.83 1.74
134.perl Out of Mem. 4.05
130.li 17.86 6.09
126.gcc 11.03 3.80
099.go 29.79 11.36
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Table 3.7 . Preprocessing time: BAS vs. OPT.

Program Preprocessing Time (Minutes) Ratio
OPT BAS BAS/OPT

300.twolf 65.29 99.62 1.53
256.bzip2 38.36 80.78 2.11
255.vortex 44.46 55.47 1.25
197.parser 44.06 67.57 1.53
181.mcf 53.64 71.17 1.33
164.gzip 23.52 31.66 1.35
134.perl 51.12 Out of Mem.
130.li 49.88 74.86 1.50
126.gcc 48.83 52.70 1.08
099.go 35.24 42.17 1.20

3.5 Summary

In conclusion, the OPT algorithm proposed in this chapter provides fast slicing times

(1.74 to 36.25 seconds) and compact dynamic dependence graph representation (20 to

210 Megabytes) leading to a space and time e�cient algorithmfor dynamic slicing. In

contrast, the prior algorithms are either space ine�cient (corresponding graph sizes

for FP are 0.84 to 1.95 Gigabytes) or time ine�cient (corresponding slicing times

for LP are 4.69 to 25.21 minutes) making them unattractive for use in practice. The

development of a cost e�ective dynamic slicing algorithm isan important contribution

as a wide range of applications that require analysis of dynamic information are

making use of dynamic slicing. Next chapter discusses how di�erent types dynamic

slices are computed based on dependence pro�le to produce a small fault candidate

set.
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Chapter 4

Effectiveness of Dynamic Slicing

To construct a fault candidate set, a slicing criterion needs to be identi�ed, which

is a value in the dynamic dependence graph that is related to the execution of the

faulty code. Once the slicing criterion is known, the dynamic dependence graph is

traversed to identify the set of statements that are relatedto this value through

chains of dynamic dependences. This set of statements includes the faulty code as

well and is therefore a possible fault candidate set. So far the slicing criterion that

has been introduced is the incorrect output, from which a backward dynamic slice is

computed to provide a fault candidate set. In this chapter, two new types of slicing

criteria and the corresponding dynamic slices are introduced. They are further used

in combination with the backward dynamic slice to produce smaller fault candidate

sets.

� The �rst new type of dynamic slice is based upon aminimal failure inducing

input di�erence. Given an input on which the program fails, theminimal failure

inducing input di�erence is the part of the input that is found to cause the

failure. As a result the forward dynamic slice(FwS) starting from the failure

inducing input produces yet another fault candidate set that captures the faulty

code.

� The second new type of dynamic slice is based uponcritical predicates. Given an

input on which the program fails, acritical predicate is an execution instance

of a conditional branch predicate such that if the outcome ofthe predicate's

execution instance is reversed, the program terminates producing the correct

output. Since the predicate outcome is related to the fault,it is found that
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the bidirectional dynamic slice(BiS) which includes both the backward and

forward dynamic slices of the predicate execution instanceproduces another

fault candidate set.

The three types of dynamic slices (backward, forward, and bidirectional slices)

are also calledsingle point dynamic slicesbecause the construction of the dynamic

slice begins starting from a value that is known to be relatedto the cause of program

failure (i.e., the faulty code executed in the failed run). Finally, now that there

exist three di�erent fault candidate sets corresponding tothe backward, forward, and

bidirectional slices, an even smaller fault candidate set can be produced by intersecting

two or more fault candidate sets corresponding to the three di�erent types of slices.

Such resulting slices are referred to asmultiple points dynamic slices(MPS) as they

are the result of computing dynamic slices starting from multiple points (erroneous

value, failure inducing input, and critical predicate).

4.1 Forward Dynamic Slice of Minimal Failure-Inducing In-
put Di�erence

Let us �rst begin by brie
y discussing the concept ofminimal failure inducing input

di�erence, which is the slicing criterion for computing aforward slice. Zeller intro-

duced the term of delta debugging [80] for the process of determining the causes for

program behaviors by looking at the di�erences (the deltas)between the old and

new con�gurations of the programs. Hildebrandt and Zeller [41, 83] then applied the

delta debugging approach to simplify and isolate the failure inducing input di�erence.

The basic idea of delta debugging is as follows. Given two program runs r s and r f

corresponding to the inputsI s and I f respectively, such that the program fails in run

r f and completes execution successfully in runr s, the delta debugging algorithm can

be used to systematically produce a pair of inputsI 0
s and I 0

f with minimal di�erence

such that program fails for I 0
f and executes successfully forI 0

s. The di�erence be-
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tween these two inputs isolates the minimal failure inducing di�erence part of the

input. These inputs are such that their values play a critical role in distinguishing a

successful run from a failing run.
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Figure 4.1 . Forward dynamic slice.

Since the minimal failure inducing input di�erence leads tothe execution of faulty

code and hence causes the program to fail, a fault candidate set can be identi�ed

by computing a forward dynamic slicestarting at this input. In other words all

statements that are in
uenced by the input value directly or indirectly through a

chain of data and/or control dependences are included in thefault candidate set.

Thus, forward dynamic slicing was recognized as a means of producing a new type of

dynamic slice which also represents a fault candidate set for the �rst time [31].

The outline of the algorithm is given in Algorithm 1.

Algorithm 1 Fault location using minimal failure inducing input di�erence.
1: Step 1: Compute minimal failure inducing input by:
2: either useddmin to Simplify input [83]:
3: I 0

f = ddmin(I f )
4: � min = I 0

f
5: or usedd to Isolate input di�erence [83]:
6: (I 0

s, I 0
f ) = dd(I s, I f )

7: � min = I 0
s - I 0

f
8: Step 2: Compute forward dynamic slice:
9: FwS = FwdSlice(I 0

f ; � min )
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Step 1: Finding minimal failure inducing input. To �nd a failure inducing

input, any of the two algorithms given by Zeller and Hildebrandt in [83] can be used.

The �rst algorithm (ddmin) simpli�es a failing test caseI f to produce a minimal

test caseI 0
f such that removing any single input entity fromI 0

f causes the failure to

disappear. Therefore �min is I 0
f in this case. The second algorithm (dd)isolatesa

minimal failure inducing input di�erence between a failingand a passing test case.

Given inputs I f and I s for a failed run and a successful run respectively, this algorithm

returns a pair of inputs (I 0
f ; I 0

s), such that I 0
s and I 0

f correspond to a successful run

and a failed run respectively and any single part ofI 0
f � I 0

s if removed fromI 0
f would

make the failure disappear or if added toI 0
s would make the failure occur. Therefore

in this case � min = I 0
f -I 0

s.

Step 2: Compute Forward Dynamic Slice. The minimal failure inducing input

di�erence � min computed by the �rst step de�nes the slicing criteria for the for-

ward dynamic slicing. In this step, the forward dynamic slice FwS = FwdSlice(I 0
f ;

� min ) is computed. Given an input and the corresponding execution, the forward

dynamic slice is the set of statements which are a�ected by that particularinput

via data/control dependences. The forward dynamic slicingalgorithm FwdSlice is

similar to the backward dynamic slicing algorithm presented in chapter 3 except that

the dependence edges are traversed in the forward direction.

There is an additional cost to using the above technique. First the user must

provide a parser for the input such that the input can be separated into meaningful

entities and hence new inputs can be generated from them. Second the user must

examine the outputs for the additional program runs corresponding to the generated

inputs.

The above approach was applied to the bu�er over
ow error ingzip� 1:0:7 as

described in Figure 4.2. Figure 4.2 illustrates the detailsof the problem. On the left

hand side of Figure 4.2, the relevant code segment is shown. The problem happens
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in the strcpy statement at line 844. Variableifname is a global array de�ned at line

198. The size of the array is de�ned as 1024. Before thestrcpy statement at line

844, there is no check on the length of stringiname. If the length of string iname

is longer than 1024, the bu�er over
ows and the program crashes. The memory

Figure 4.2 . Bu�er over
ow bug in gzip.

layout of the gzip program is shown on the right side of Figure 4.2. As shown,

there is a global pointerenv located in an address space above arrayifname. The

di�erence betweenenv and ifname is 3604 bytes. If the length of stringiname is

larger than 3604, the value ofenv will be changed due to bu�er over
ow. At line

1341 of functiondo exit, before the program quits, it tries to free the memory pointed

to by env. If the value of env is an illegal memory address due to bu�er over
ow, it

causes a segmentation fault at line 1344. Two inputs were picked: the �rst input is

a �le name 0aaaaa0, which is a successful input, and the second input is a �le name

0a < repeated 3610 times> 0, which is a failure input because the length is larger

than 3604. After applying sddmin algorithm [83] on them, two new inputs resulted:

the new successful input was a �le name0a < repeated 3604 times> 0 and the new

failed input was a �le name0a < repeated 3605 times> 0. The failure inducing input

di�erence between them was the last character 'a' in the new failed input.
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Next, the forward slice was computed on the failure inducinginput di�erence in

the failed input. The size of the forward slice was 3 which includes thefor statement

at line 40 in strcpy:c. This is of course the place where the bu�er over
ow occurred.

The slicing implementations run on the binary code level andthus are able to check

the memory space of a program and even check the code in the library.

4.2 Bidirectional Dynamic Slice of a Critical Predicate

Given an erroneous run of the program, the objective of this method is to explicitly

force the control 
ow of the program along an alternate path at a critical branch

predicate such that the program produces the correct output. The basic idea of this

approach is inspired from the following observation. Givenan input on which the

execution of a program fails, a common approach to debuggingis to run the program

on this input again, interrupt the execution at certain points, make changes to the

program state, and then inspect the impact of changes on continued execution. If

the changes to program state that cause the program to terminate correctly can be

automatically discovered, it becomes much easier to understand the error. However,

automating the search of state changes is prohibitively expensive and di�cult to

realize because the search space of potential state changesis extremely large (e.g.,

even possible changes for the value of a single variable are enormous if the type of the

variable is integer or 
oat). On the other hand, changing theoutcomes of predicate

instances greatly reduces the state search space since a branch predicate has only

two possible outcomes, true or false. Therefore note that through forcedswitchingof

the outcomes of some predicate instances at runtime, it may be possible to cause the

program to produce correct results.

Having identi�ed a critical predicate instance, a fault candidate set is computed

as thebidirectional dynamic sliceof the critical predicate instance. This bidirectional

slice is essentially the union of the backward dynamic sliceand the forward dynamic
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Figure 4.3 . Bidirectional dynamic slice.

slice of the critical predicate instance. Intuitively, the reason why the slice must

include both the backward and forward slice is as follows. Consider the situation

in which the e�ect of executing faulty code is to cause the predicate to evaluate

incorrectly. In this case the backward dynamic slice of the critical predicate instance

will capture the faulty code. On the other hand it is possiblethat by changing the

outcome of the critical predicate instance the execution offaulty code is avoided and

hence the program terminates normally. In this case the forward slice of the critical

predicate instance will capture the faulty code. Therefore, the faulty code will either

be in the backward slice or the forward slice. The role of bidirectional dynamic slices

in fault location was �rst recognized for the �rst time in [84].

The notion of critical predicate is illustrated with the faulty version of the 
ex (a

fast lexical analyzer generator) program shown in Figure 4.4 which is taken from the

Siemens suite [43, 2]. The Siemens suite provides the associated test suites and faulty

version for each program. The program in Figure 4.4 is derived from 
ex � 2:4:7 and

augmented by the provider of the program with a bug that is circled in the �gure:

base[i + 1] should actually bebase[i ]. The �rst provided input which produced an

erroneous output was taken. It was observed that the output is di�erent from the

expected output for the 538th character, a '1' is produced asoutput due to the

execution ofprintf in the elsepart (line 2696) of theelse if statement at line 2690

instead of a '0' that should be output by execution of theprintf in the then part of the

else if statement. Under the correct execution at line 2673o�set would have been
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assigned the value ofbase[0] which is 1. The variablechk[0] at line 2681 would have
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Figure 4.4 . Incorrect output bug in 
ex .

been assignedACTION POSITION causing the predicate at line 2690 to evaluate

to true for loop iteration corresponding toi = 0. Due to the error at line 2673,

an incorrect value ofo�set (= 3) causesch[0] to have an incorrect stale value (=1)

which causes the predicate at line 2690 to incorrectly evaluate to its false outcome.

The proposed method looked for a predicate instance whose switching corrected the

output. The appropriate instance of theelse if predicate instance was found through

this search. Once this predicate instance was found, it could be easily determined

by following backwards the data dependences that the incorrect value ofch[0] was a

stale value and it did not come from most recent execution of for loop at line 2667.

Thus, now it was clear that the error was in the statement at line 2673 which set the

o�set value.

In the above example, enforcing the outcome of a predicate avoided the need

to search for potential modi�cations of values forchk[ ], o�set , or base[ ] which are

integer variables and thus can take many di�erent values. The above example also

illustrates that it is important to alter the outcome of selected predicate instances
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as opposed to all execution instances of a given predicate. This is because the fault

need not be in the predicate but elsewhere and thus all evaluations of the predicate

need not be incorrect.

The e�ectiveness of this approach can be explained as follows. Given a program

run, from the perspective of a program output, the computation performed to com-

pute an output can be divided into two parts: theData Part (DP) and the Select

Part (SP). The Data Part, DP, consists of executed instructions which compute data

values that are involved in computing the actual value that is output. These instruc-

tions can be identi�ed by computing the backward data slice, i.e. transitive closure

of dynamic data dependences starting from the output value.The Select Part, SP, is

the part of the computation that caused the selection of instructions in the dynamic

data slice for execution. The presence of faulty code inSP may cause an incorrect

dynamic data slice to be selected for execution and thus the generation of a wrong

output value. In contrast to DP, the size ofSP is much bigger. The study in [84]

shows that the number of executed instructions inDP is 3 to 7 times smaller than

the number of executed instructions inSP and the number of executed predicates

is only a very small percentage of the total executed instructions in SP. This study

suggests two points. First, if an error gets exercised, it ismore likely the error occurs

in the SP part of the execution. Second, since computation inSP eventually takes ef-

fect through predicates, switching the faulty predicate actually �xes the entire faulty

computation in SP that contributes to the branch outcome of the faulty predicate.

That is to say, switching predicates is a natural solution tolocate predicate related

faults.

4.2.1 Finding the Critical Predicate

In this section a detailed algorithm is developed for predicate switching. The general

idea of the approach is to perform repeated executions of theprogram on the failing
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input and switch conditional branch outcomes during these re-executions till a pred-

icate switching is found that causes the program to produce the correct output. In

doing so, it is the goal to develop a search strategy that is both practical and e�ective.

To achieve this goal a search strategy is designed which incorporates the following

features that together limit the search space and order the search.

Even though predicate switching greatly reduces the searchspace by limiting

state changes to conditional branch outcomes, there are still a substantial number of

instances of executed conditional branches whose outcomesare candidates for switch-

ing. Therefore, the search is limited so that during each newprogram execution, the

outcome of only asingle predicate instanceis switched. In other words, the program

behavior of simultaneously switching outcomes of multiplepredicate instances is not

explored because the number of such possibilities is very large.

� Last Executed First Switched (LEFS) Ordering.It has been decided that the

outcome of one branch predicate instance should be switchedin each re-execution.

Next, the order in which possible predicate switchings are explored is discussed.

One simple ordering strategy that is employed is based upon the following ob-

servation [61]:execution of faulty code (i.e., root cause of a failed run) isoften

not far away from the point at which the program fails (e.g., program crashes

or it produces a wrong output value).Therefore possible predicate switchings

are explored in the reverse order of the predicate executions, i.e. the outcome

of the conditional branch instance encountered last is switched �rst.

� Prioritization-based (PRIOR) Ordering. In addition to the simple LEFS or-

dering strategy, another more aggressive prioritization based ordering strategy

(PRIOR) is further developed. This strategy consists of two main steps. In the

�rst step an algorithm is used to partition the set of all branch predicate in-

stances into two subsets: those that are expected to be in
uenced by the faulty

code via dependences and those that are not expected to be in
uenced by faulty
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Table 4.1 . Search strategies:LEFS vs. PRIOR.

Program Total After Dep . Total LEFS PRIOR
Instr. Fault dist. Preds


ex 2.5.319(a) 17,637 2,583 23 3,669 432 6

ex 2.5.319(b) 366,624 search 60,481 failed

ex 2.5.319(c) 303,121 search 46,820 failed

grep 2.5 21,001 416 27 2,555 61 56

grep 2.5.1 (a) 4,290 232 26 844 38 21
grep 2.5.1 (b) 10,337 search 1,652 failed
grep 2.5.1 (c) 41,068 185 15 9,561 32 28

make 3.80 (a) 1,907,361 163,050 23 166,837 155,492 102
make 3.80 (b) 1,787,616 404,400 50 218,778 50,909 7,108
bc-1.06 68,336 15,676 6 9,684 2,079 2
tar-1.13.25 2,471 1,783 12 470 388 3
tidy 771,154 108 3 131,336 39 1

s-
ex-v4 321,888 11,728 5 59,352 4,228 37
s-
ex-v5 171,953 search failed 30,203 error in DP
s-
ex-v6 8,252 search failed 1,717 error in DP
s-
ex-v7 187,903 139,799 21 33,136 26,028 6
s-
ex-v8 9,848 1,522 NA 1,943 218 NA
s-
ex-v9 69,258 59,209 33 13,010 11,085 190
s-
ex-v10 177,821 41 16 29,240 4 4
s-
ex-v11 185,724 27,809 11 33,199 7,189 13

code. The ones in the �rst subset are explored before the onesin the second

subset. In the second step the branch predicate instances are ordered within

the �rst subset according to their dynamic dependence distance from the erro-

neous output value. More precisely, the predicate instances that are separated

by fewer dependence edges from the erroneous output value are explored before

those that are separated by greater number of dependence edges. The resulting

ordering of branch predicate instances is then used in our search.

Next, data is presented con�rming the observations on whichthe above design

choices are made. This data is based upon the set of real bugs presented in Table 2.3

in chapter 2 and a set of injected bugs taken from the faulty versions of
ex provided

in the Siemens suite [43], denoted ass-
ex. Now let us consider the data in Table 4.1.
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The total number of instructions executed, excluding the instructions from library

code, before program terminated during a failing run is given �rst in column ( Total

Instns). In 15 out of 20 faults that were studied a predicate instance was found,

switching which caused the failure to be removed. In three cases (faults (b) and (c)

in 
ex 2.5.319; fault (b) in grep 2.5.1) the searching technique could not identify the

critical predicate because the error is too complex for any predicate switch to produce

correct output value. In versions 5 and 6 ofs-
ex, the search failed because the errors

were in the data part of the computation. The number of instructions executed by

the program following the execution of the critical predicate and before the program's

termination are given in columnAfter Fault . This number is considerably smaller than

the number in Total Instrns. This di�erence motivates the LEFS strategy. The next

column, Dep. Dist., is the shortest dependence distance between the output andthe

critical predicate in the dynamic dependence graph. As one can see, this distance

is quite small and thus this provides the motivation for ourPRIOR strategy. The

remaining data in the table demonstrates the e�ectiveness of the two search strategies.

The column labeledTotal Preds is the total number of conditional branches that were

executed during the program runs while the last two columns,LEFS and PRIOR, give

the number of predicate instances that were actually explored by switching before

�nding a predicate instance whose switching produced the correct output (i.e., a

critical predicate). As we can see, these numbers are considerably smaller than the

numbers inTotal Preds. In addition, the PRIOR number is far smaller than theLEFS

number in most of the cases. In the case ofs-
ex-v8, although a critical predicate was

found using theLEFS strategy, one could not be found using thePRIOR strategy.

This is because the dynamic slices could not be computed on which the ordering

of predicate instances is based. Overall, the above data indicates that the more

aggressivePRIOR strategy for ordering predicate instances is very e�ective.

Given the choices in search strategies described above, thepredicate switching

algorithm is presented. The overview of the algorithm is given in Figure 4.5. The
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algorithm has three major steps: �nding the �rst erroneous value in a failing run;

identifying the predicate instances which will be considered using predicate switching;

and �nally searching for a critical predicate reversal of whose outcome causes the

program run to succeed. Let us consider the above steps in greater detail:

Step 1: Locate the �rst erroneous output value. A program run is considered to

be a failing run if it produces incorrect output. Given the correct output, the �rst

deviation between the output produced by the failing run andthe correct output and

also identify the execution instanceI e of instruction I that produced the erroneous

output value. The goal of the algorithm is to �nd a predicate instance switch that

causes correct output value to be produced.

Step 1: Find Erroneous Value

Examine failed run to identify the �rst erroneous value
{ erroneous output or value that crashes the program.

Step 2: Find Predicates for Switching

(a) Run the program again, generatePredicate Trace (P T) identifying all instances
of branch predicates executed and their execution order.

(b) Perform Predicate Ordering of predicates
in P T using LEFS or PRIOR.

Step 3: Find Critical Predicate

for each pred. instanceP in ordered P T do
Generate instrumented program to switchP 's outcome;
Execute above program;
if program run succeeds, reportP and terminate search.

endfor

Figure 4.5 . Algorithm overview.

As mentioned earlier, if the program crashes at some execution instance I e of

instruction I , the value or address referenced byI e that caused the program to crash

takes the place of the erroneous output value. The goal of thealgorithm in this

situation is to �nd a predicate instance switch such that, following the switch, when

execution instanceI e is encountered, the program does not crash.

Step 2: Identify predicate instances for switching. In this step the program is re-
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run and the Predicate Trace(P T) is collected. The predicate trace is a record of all

instances of conditional branches executed during the failing program run from the

start of the execution to the point at which the failing run produced the erroneous

value identi�ed in the preceding step (i.e., whenI e was executed). The program exe-

cution performed in this step not only generates the predicate trace, but in addition

it also provides information using which predicate instance ordering is performed. If

LEFS is used, the ordering is already clear from the predicate trace. If PRIOR is

used the ordering is performed as follows. Thedynamic dependence graphis generated

containing both dynamic data and control dependences during this run. Partitioning

of predicates into high and low priority subsets is performed using dynamic slicing.

The predicate instances that belong to the computed dynamicslice form the subset

that contains predicate instances that were involved in producing the erroneous out-

put. The remaining predicate instances form the lower priority subset. The predicate

instances in the higher priority subset are further arranged in the order of increasing

dependence distance from the erroneous output. The distances needed to perform

this ordering are obtained from the dynamic dependence graph.

Step 3: Searching for a critical predicate. Figure 4.6 pictorially shows the search for

a critical predicate when the simpleLEFS strategy is used. The �rst line represents

the failed run up to the point it produced the �rst erroneous value. The small ovals

mark execution of predicate instances which are also labeled. Then the subsequent

steps show how the predicate instances are switched one at a time in each subsequent

run in the LEFS order. The predicate instance that is switched is marked using a

larger oval. During each run the new output value is observed. The above process is

repeated till correct output value is generated. The basic functioning of this step is

the same whenPRIOR strategy is used, only the order in which predicate instances

are switched changes.
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Figure 4.6 . Search method.

4.2.2 Results of Searching for Critical Predicates

This section presents the evaluation of the critical predicate searching algorithm. Ta-

ble 4.2 shows how often the algorithm is successful in �ndinga critical predicate. As

column Found shows, in 15 out of 20 cases a predicate instance switch was found

which caused the program to produce correct output or eliminated the cause of the

program crash. The critical predicate identi�ed is indicated in columnsWhere and

Which. Here columnWhere gives the �le name and source line number at which the

switched predicate can be found andWhich is the dynamic instance of the predicate

that was switched. The predicate instance number is measured from the point at

which erroneous output is produced or program crashed. A value of 0 corresponds to

the most recent execution instance of the predicate while greater values correspond

to earlier instances of the predicate. As one can see, in manycases the most recent

instance of a predicate is the critical instance while in some cases it is not the most

recent instance. Finally, columnFalse +vesrepresents the number of dynamic pred-

icate switches, which produced correct output but were not related to the fault, that

were found byPRIOR (except in case ofs-
ex-v8 which usesLEFS) before the desired

predicate switch was located. As shown by the results, in allcases except one, this

number is 0 indicating that the �rst predicate switch located by PRIOR was related

to the fault. In one case �rst predicate switch found was not useful but the second

one found was meaningful.

It has already been shown earlier thatPRIOR locates the desired predicate in-

stance switch far sooner thanLEFS. Now the time taken by PRIOR to locate the
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Table 4.2 . Successful/Failed searches.

Program Found Where Which False +ves


ex 2.5.319(a) yes gen.c @ 1813 0 0

ex 2.5.319(b) no search failed

ex 2.5.319(c) no search failed
grep 2.5 yes grep.c @ 532 0 0
grep 2.5.1 (a) yes search.c @ 549 0 0
grep 2.5.1 (b) no search failed
grep 2.5.1 (c) yes dfa.c @ 2854 2 0
make 3.80 (a) yes read.c @ 6162 143 1
make 3.80 (b) yes remake.c @ 652 1 0
bc-1.06 yes storage.c @ 176 9 0
tar-1.13.25 yes prepargs.c @ 81 0 0
tidy yes parser.c @ 3496 0 0
s-
ex-v4 yes 
ex.c @ 2978 0 0
s-
ex-v5 no search failed { error in DP
s-
ex-v6 no search failed { error in DP
s-
ex-v7 yes 
ex.c @ 9171 0 0
s-
ex-v8 yes 
ex.c @ 11833 0 0
s-
ex-v9 yes 
ex.c @ 5046 0 0
s-
ex-v10 yes 
ex.c @ 2687 1 0
s-
ex-v11 yes 
ex.c @ 3559 0 0
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desired predicate instance switch is presented. The results are given in Table 4.3. As

one can see, the time taken to locate critical predicates is quite reasonable. In many

cases it is around 1 minute. The cases in which the search failed, the time is large

(few hours) as it went through all the predicate instances.

Table 4.3 . Search time.

Program PRIOR


ex 2.5.319(a) 2.51 sec

ex 2.5.319(b) search failed (364 min)

ex 2.5.319(c) search failed (274 min)
grep 2.5 8.83 sec
grep 2.5.1 (a) 2.59 sec
grep 2.5.1 (b) search failed (4 min 28 sec)
grep 2.5.1 (c) 4.46 sec
make 3.80 (a) 26.92 sec
make 3.80 (b) 30 min 37 sec
bc-1.06 0.49 sec
tar-1.13.25 2.83 sec
tidy 0.90 sec
s-
ex-v4 8.76 sec
s-
ex-v5 search failed (96 min 20 sec)
s-
ex-v6 search failed (3 min 56 sec)
s-
ex-v7 3.34 sec
s-
ex-v8 34.35 sec
s-
ex-v9 34.51 sec
s-
ex-v10 2.76 sec
s-
ex-v11 2.56 sec

The results of using critical predicates to produce fault candidate sets will be

introduced in later sections in this chapter.

4.3 Multiple Points Dynamic Slices: Dynamic Chops

Three di�erent ways of computing fault candidate sets have been described in the

preceding section. The faulty code is captured by all the produced fault candidate
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set. Therefore it follows that if more than one kind of dynamic slice is available, the

size of the fault candidate set can be further reduced by intersecting the single point

dynamic slices. First Figure 4.7 shows that intersecting the forward and backward

dynamic slices produces adynamic chop. The dynamic chop captures the faulty
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Figure 4.7 . Multiple points dynamic slices: dynamic chop (left); and bidirectional
dynamic chop (right).

code and is smaller than both the forward and backward dynamic slices. Next, if a

bidirectional dynamic slice is available, it can be intersected with the dynamic chop to

further reduce the size of the fault candidate set. As shown in the �gure the result of

this operation is a pair of dynamic chops, which is refer to asa bidirectional dynamic

chop, one between the failure inducing input di�erence and a critical predicate and

the other between a critical predicate and the erroneous output value.

Let us demonstrate multiple points dynamic slices using an example. The code

segments in Figure 4.8 are taken from the faulty versionv4 of program
ex from the

Siemens suite's website [2]. The assignment at statement 2983 is wrong. All the three

types of slicing criteria are identi�ed: theminimal failure inducing input di�erence is

the program arguments of -̀F ' and -̀C '; the critical predicate is at statement 2978;

and theerroneous outputis observed at statement 3022. The backward dynamic slice,

forward dynamic slice, and bidirectional dynamic slice on the corresponding slicing

criteria are computed as follows:
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BwS = f 428; 430; 431; 453; 460; 462; 512; 514; 2978; 2979; 2983; 2989; 3016; 3022g
FwS = f 431; 453; 460; 461; 462; 512; 514; 2978; 2979; 2983; 2986; 2987; 2988; 2989;

3016; 3022; 3026g
BiS = f 428; 430; 431; 453; 460; 2978; 2979; 2981; 3022g:

They have the sizes of 14, 17, and 9, respectively. The dynamic chop and bidirec-

tional dynamic chop are computed by taking intersections:

BwS \ FwS = f 431; 453; 460; 462; 512; 514; 2978; 2979; 2983; 2989; 3016; 3022g
BwS \ FwS \ BiS = f 431; 453; 460; 2978; 2979; 2981; 3022g:

They contain 12 and 7 statements respectively. Statements 428 and 430 are re-

moved from BwS by intersecting with FwS. In other words, theyare not fault can-

didates because they are not a�ected by the failure inducinginput. Intersecting BiS

with the previous computed dynamic chop further removes 5 statements from the fault

candidate set. This example clearly illustrates that multiple points dynamic slicing is

very e�ective in reducing the size of the fault candidate set. The experimental results

presented later also reveal the same fact.

4.4 Implementation

The Trimaran compiler infrastructure [4] used in earlier chapters was designed for the

research of explicit instruction level parallelism. Its usability as a basis of dynamic

analyses research is hence limited. For example, it does notgenerate native executa-

bles. Instead, it generates intermediate code that is only executable in a simulator

provided by Trimaran. In order to apply dynamic slicing to a larger set of realistic

programs, the implementation in this chapter is based on theValgrind [1] system,

which takes Intel x86 binaries generated from agcc compiler.

System usage. During the execution, dynamic dependences are identi�ed and the

dynamic dependence graph is constructed. After the execution reaches its end, ei-

ther because the program terminates or because the program crashes, the user is
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presented with a simple debugging interface which provideslimited capabilities in-

cluding the ability to request computation of a dynamic slice for an execution instance

of an instruction that writes to a register, writes to a memory location, or represents

execution of a predicate. The slicing criteria used for a backward dynamic slice is

identi�ed by the user and input into the system. The slicing criteria for forward dy-

namic slicing is computed separately and then input into thesystem by the user. The

slicing criteria for computing a critical predicate is automatically determined by the

tool. Once the slicing criteria are known to the system, thenthrough the traversals

of the dynamic dependence graphs already available to the system, the computation

of dynamic slices and their intersections is performed. Even though the system works

on binary level, the slices are mapped back to source code level using the debugging

information generated bygcc. For the library code, if debug information is not avail-

able, the slice is reported in terms of binary instructions.However, if the source code

of the library is available, it can be recompiled with the debug option and then we

can also report the portion of the slice from the library codeat source code level.

Implementation details. The main components of the system carry out the fol-

lowing functions. The static analysiscomponent of the system computes static con-

trol dependence information required during slice computations from the binary. The

static analysis was implemented using theDiablo [3] retargetable link-time binary

rewriting framework as this framework already has the capability of constructing the

control 
ow graph from x86 binary. The dynamic pro�ling component of the system

which is based upon theValgrind [1] that accepts the samegcc generated binary,

dynamically instruments it by calling the slicing instrumenter, and executes the in-

strumented code with the support of theslicing runtime. The slicing instrumenter

and slicing runtime were developed to enable collection of dynamic information and

computation of dynamic slices. Valgrind's kernel is a dynamic instrumenter which

takes the binary and before executing any new (never instrumented) basic blocks
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it calls the instrumentation function, which is provided by the slicing instrumenter.

The instrumentation function instruments the provided basic block and returns the

new basic block to the Valgrind kernel. The kernel executes the instrumented basic

block instead of the original one. The instrumented basic block is copied to a new

code space and thus it can be reused without calling the instrumenter again. The

slicing runtime essentially consists of a set of call back functions for certain events

(e.g., entering functions, accessing memory, binary operations, predicates etc.). The

static control dependence information computed by the static analysis component is

represented based on the virtual addresses which can be understood by Valgrind.

4.5 Experimental Evaluation

Experiments were conducted to study several issues. The �rst issue was about the

applicability of the three slicing techniques: Backward Slice(BwS); Forward Slice

(FwS); and Bidirectional Slice (BiS). Next the dynamic slice sizes were compared to

see which technique is more e�ective in narrowing the size ofthe fault candidate set.

Finally an experiment was conducted to study the synergy among these techniques,

i.e. bene�t of usingmultiple points dynamic slicingwhich narrows the fault candidate

set by intersecting the resulting BwS, FwS, and BiS dynamic slices. In the remainder

of this section the detailed results will be presented and analyzed about the above

experiments.

4.5.1 Applicability

The applicability of the three types of dynamic slices was �rst studied. The results

are provided in Table 4.4 where an entry of
p

and � indicate whether the particular

type of dynamic slice could be computed or could not be computed respectively. In

addition, the presence of
p

indicates that the faulty code was indeed captured by the

computed dynamic slice. In other words, although in generala dynamic slice may or
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may not capture the faulty code, for the failures studied thecomputed dynamic slices

did contain the faulty code. Thus the slicing criteria used in computing the various

types of dynamic slices are highly e�ective.

Table 4.4 . Applicability of dynamic slice types.

Program LOC EXEC (%LOC) BwS FwS BiS


ex 2.5.31 (a) 26,754 1871(6.99%)
p p p

(b) 26,754 2198 (8.22%)
p p

�
(c) 26,754 2053 (7.67%)

p p
�

grep 2.5 8,581 1157 (13.48%) �
p p

grep 2.5.1 (a) 8,587 509 (5.93%) �
p p

(b) 8,587 1123 (13.08%) �
p

�
(c) 8,587 1338 (15.58%) �

p p

make 3.80 (a) 29,978 2277 (7.60%)
p p p

(b) 29,978 2740 (9.14%)
p p p

gzip-1.2.4 8,164 118 (1.45%)
p p p

ncompress-4.2.4 1,923 59 (3.07%)
p p p

polymorph-0.4.0 716 45 (6.29%)
p p p

tar-1.13.25 25,854 445 (1.72%)
p p p

bc-1.06 8,288 636 (7.67%)
p p p

tidy-34132 31,132 1519 (4.88%)
p p p

s-
ex-v4 12,418 1631 (13.13%)
p p p

s-
ex-v5 12,418 1882 (15.16%)
p p

�
s-
ex-v6 12,418 424 (3.41%)

p
� �

s-
ex-v7 12,418 2045 (16.47%)
p p p

s-
ex-v8 12,418 610 (4.91%) � �
p

s-
ex-v9 12,418 1396 (11.24%)
p p p

s-
ex-v10 12,418 1683 (13.55%)
p p

�
s-
ex-v11 12,418 1749 (14.08%)

p
�

p

It is also observed that while each dynamic slicing technique was applicable in

well over half of the 23 failures studied, there were few failures for which each of

the technique could not be applied. In particular, BwS couldnot be computed for

5 of the 23 failures, FwS could not be computed for 3 of the 23 failures, and BiS

could not be computed for 6 of the 23 failures. In addition, itis observed that while

there was no failure for which all three techniques could notbe applied, there were
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failures where only one type of slicing technique was found to be applicable. It is also

shown that in many cases all three techniques were applicable. In conclusion, the

results of the experiments show that although a single dynamic slicing technique may

not be applicable to all failures, it is highly likely there exist other dynamic slicing

techniques taking advantage of di�erent types of evidences. And, it is often the case

that multiple slicing techniques can be used in combination.

Let us brie
y discuss the reasons for each of the dynamic slicing techniques not

being applicable as observed in the failed runs studied.

� (No output.) Backward slicing was found to be not applicablefor grep. As

explained in previous sections, the faults present ingrep caused the program to

terminate without the execution of any output producing statement (although

the correct output is not no output). Since backward slice iscomputed starting

at the execution instance of a statement that produced an incorrect output

value, for failing runs ofgrep, no backward slicing criteria was available.

� (No failure inducing input.) Forward slice containing the root cause could not

be computed fors � 
ex versionsv6; v8; and v11. We observed two situations

in these programs. First, in some cases the fault was in form of an incorrect

constant assignment (i.e., the constant value used was incorrect). As a result,

the program failed on any input and the error did not appear inany computed

forward slice. In other words, the failure is not induced by input. Second

situation observed is as follows. To identify the failure inducing input, according

to the delta debugging algorithm by Zeller [83], it is required to begin with

two known inputs: one on which the program fails and another on which the

program runs successfully. Unfortunately the fault was such that there was no

input in the given test suite for which the program did not fail. Therefore the

delta debugging algorithm could not be applied successfully.

� (No critical predicate.) Bidirectional slice could not be computed for some
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versions of 
ex 2 :5:31, grep 2:5:1, and s � 
ex . This is because a critical

predicate could not be identi�ed. The reason why sometimes acritical predicate

cannot be found is because none exists. For example, if the bug is complex,

simple switching of a single branch outcome may not result inthe correct output

being generated.

Thus, there are di�erent situations under which each of the above technique fails.

Therefore to enable the use of dynamic slicing in fault location across a broad range

of programs and faults it is important to consider multiple types of dynamic slices.

4.5.2 Dynamic Slice Sizes

If dynamic slicing is not used, the programmer must search all statements executed

during a failed run for faulty code. However, by employing dynamic slicing the size

of the fault candidate set can be reduced from the set of executed statements. In this

section the degree to which this reduction is achieved will be evaluated for the three

kinds of slices (BwS, FwS, and BiS). The sizes of these three types of slices will also

be compared to determine if one kind is preferable over the other types.

Lets consider the results presented in Table 4.5. In this table LOC is the lines of

code in each program while EXEC is the lines of code that were executed during the

failing run being used to locate faulty code. The lines of code belonging to each of

the dynamic slices (BwS, FwS and BiS) are also given. Finallythe MIN column gives

the type and size of the smallest of the three kinds of slices.

First it can be observed that even though the executed lines of code EXEC as a

percentage of total lines of code LOC ranges from only 1.45% to 16.47%, EXEC is still

quite large (> 1000 in 15 out of 23 cases). Therefore reduction in the size ofthe fault

candidate set is highly desirable. Second the data shows that the dynamic slicing

techniques give signi�cant reductions. The BwS, FwS, and BiS exceed a thousand

in only 1, 4, and 2 cases respectively. In parentheses the slices sizes as a percentage
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of the executed statements are also given. It can be observedthat all three kinds

of dynamic slices, when applicable, reduce the size of the fault candidate set quite

signi�cantly. The size of BwS ranges from 2.39% to 47.08% of EXEC. The size of FwS

ranges from 0.90% to 63.18% of EXEC. Finally the size of BiS ranges from 1.54% to

60.25% of EXEC.

The fault candidate setmetric FCS(xS) indicates the fraction of lines of code

that are in the fault candidate set across all the benchmarkswhen slice of the type

xS is used. It is the ratio of the total lines of code when a slice of type xS is used

(
P

Size(xS)) to the total lines of code that are being executed (
P

EXEC ). However,

since all kinds of slices can not be computed in all executions, the executions are

di�erentiated into those where the slice can be computed (App(xS)) and those where

it cannot be computed (App(xS)). The full formula thus reads:

FCS(xS) =

P
App(xS ) Size(xS) +

P
App(xS ) EXEC

P
All EXEC

From the data in Table 4.5 one can �nd that FCS(BwS) = 0.3781, FCS(FwS) =

0.4919, and FCS(BiS) = 0.4920. Hence, using backward slices (BwS), on average,

a programmer needs to look at 37.8% of the executed statements. For forward and

bidirectional slices this number is just over 49%. Thus according to this metric all

three techniques are very e�ective.

From the MIN column in Table 4.5 it is observed that no one typeof dynamic slice

is consistently the smallest. Out of 18 cases for which a backward dynamic slice were

computed, in 8 the backward dynamic slice is the best choice (i.e., it is the smallest).

Out of 20 cases where a forward dynamic slice was computed, in9 cases the forward

dynamic slice is the smallest. Finally, out of 17 cases wherea bidirectional slice was

computed, in 6 it is the smallest. From this perspective the forward dynamic slice

is slightly better than backward dynamic slice which is in turn slightly better than

the bidirectional dynamic slice. From the MIN column it can also be observed that
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in only 1 case the smallest slice size exceeds a thousand and in 8 cases the slice size

is no more than 50. The numbers in parentheses are slice sizesas a percentage of

LOC. As shown by the data, this number is quite small ranging from 0.04% to 6.98%.

Given that the numbers in this range are quite small, it is worth pointing out that a

substantial part of the reduction is the result of many statements in the program not

being executed at all during the failed runs.

Table 4.5 . Comparison of dynamic slice sizes.

Program BwS (%EXEC) FwS (%EXEC) BiS (%EXEC) MIN (%LOC)


ex 2.5.31 (a) 695 (37.15%) 605 (32.36%) 225 (12.03%) BiS: 225 (0.84%)
(b) 272 (12.37%) 257 (11.69%) - FwS: 257 (0.96%)
(c) 50 (2.44%) 1368 (66.63%) - BwS: 50 (0.19%)

grep 2.5 - 731 (63.18%) 88 (7.61%) BiS: 88 (1.03%)

grep 2.5.1 (a) - 32 (6.29%) 111 (21.81%) FwS: 32 (0.37%)
(b) - 599 (53.34%) - FwS: 599 (6.98%)
(c) - 12 (0.90%) 453 (33.86%) FwS: 12 (0.14%)

make 3.80 (a) 981 (43.08%) 1239 (54.41%) 1372 (60.25%) BwS: 981 (3.27%)
(b) 1290 (47.08%) 1646 (60.07%) 1436 (52.41%) BwS: 1290 (4.30%)

gzip-1.2.4 34 (28.81%) 3 (2.54%) 39 (33.05%) FwS: 3 (0.04%)
ncompress-4.2.4 18 (30.51%) 2 (3.39%) 30 (50.85%) FwS: 2 (0.10%)
polymorph-0.4.0 21 (46.67%) 3 (6.67%) 22 (48.89%) FwS: 3 (0.42%)

tar-1.13.25 105 (23.60%) 202 (45.39%) 117 (26.29%) BwS: 105 (0.41%)
bc-1.06 204 (32.07%) 188 (29.56%) 267 (41.98%) FwS: 188 (2.27%)

tidy-34132 554 (36.47%) 367 (24.16%) 541 (35.62%) FwS: 367 (1.18%)

s-
ex-v4 39 (2.39%) 877 (53.77%) 37 (2.27%) BiS: 37 (0.30%)
s-
ex-v5 692 (36.77%) 1187 (63.07%) - BwS: 692 (5.57%)
s-
ex-v6 156 (36.79%) - - BwS: 156 (1.26%)
s-
ex-v7 243 (11.88%) 910 (44.50%) 836 (40.88%) BwS: 243 (1.96%)
s-
ex-v8 - - 280 (45.90%) BiS: 280 (2.25%)
s-
ex-v9 236 (16.91%) 535 (38.32%) 230 (16.48%) BiS: 230 (1.85%)

s-
ex-v10 727 (43.20%) 970 (57.66%) 727 (43.20%) BwS: 727 (5.85%)
s-
ex-v11 102 (5.83%) - 27 (1.54%) BiS: 27 (0.22%)

4.5.3 Multiple Points Dynamic Slices

In the preceding section a relative evaluation of the three types of dynamic slices

was carried out. In contrast in this section the synergy of these techniques is stud-

ied, which is essentially the motivation for themultiple points dynamic slicingthat

was proposed earlier. In particular, the goal of this experiment is to study whether

multiple points dynamic slices are signi�cantly smaller than the individual dynamic

slices.
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Dynamic Chops. First the sizes of multiple points dynamic slices were obtained

by intersecting the backward dynamic slice with the forwarddynamic slice. The

resulting data is given by the column labeledDynamic Chopin Table 4.6. The size

of this multiple points dynamic slice with the size of the smaller of the BwS and FwS

dynamic slices which is given in column labeledmin (BwS; FwS) in the table. Only

this data is provided for those cases where both BwS and FwS were applicable since

only in these cases can a dynamic chop be computed. From the data in Table 4.6 one

can tell that the size of this dynamic chop can be signi�cantly smaller than the size

of the smaller of the BwS and FwS slices. The numbers in parentheses give the sizes

of the dynamic chops as a percentage of the sizes ofmin (BwS; FwS). As shown in

the table, in 7 cases out of 13, the size of the dynamic chop slice is less than half the

size of the smaller of the BwS and FwS dynamic slices.

Table 4.6 . Sizes of dynamic chops and bidirectional dynamic chops.

Program min(BwS,FwS) Dynamic Chop min(BwS,FwS,BiS) Bidirectional Dynamic Chop


ex 2.5.31 (a) 605 256 (42.31%) 225 27 (12.00%)
(b) 257 102 (39.69%) - -
(c) 50 5 (10.00%) - -

grep 2.5 - - 88 86 (97.73%)

grep 2.5.1 (a) - - 32 25 (78.13%)
(b) - - - -
(c) - - 12 12

make 3.80 (a) 981 739 (75.33%) 981 739 (75.33%)
(b) 1290 1104 (85.58%) 1290 1051 (81.47%)

gzip-1.2.4 3 3 3 3
ncompress-4.2.4 2 2 2 2
polymorph-0.4.0 3 3 3 3

tar-1.13.25 105 103 (98.09%) 105 45 (42.86%)
bc-1.06 188 102 (54.26%) 188 102 (54.26%)

tidy-34132 367 164 (44.69%) 367 161 (43.87%)

s-
ex-v4 39 7 (17.95%) 37 7 (18.92%)
s-
ex-v5 692 544 (78.61%) - -
s-
ex-v6 - - - -
s-
ex-v7 243 63 (25.93%) 243 63 (25.93%)
s-
ex-v8 - - - -
s-
ex-v9 236 112 (47.46%) 230 112 (47.46%)

s-
ex-v10 727 574 (78.95%) 727 574 (78.95%)
s-
ex-v11 - - 27 27
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Bidirectional Dynamic Chop. Second the sizes of multiple points dynamic slice

were obtained by intersecting all three dynamic slices: BwS, FwS, and BiS. The

resulting data is given by the column labeledBidirectional Chop in Table 4.6. The

sizes of bidirectional dynamic chops are compared with the sizes of the smallest slices

of the BwS, FwS, and BiS dynamic slices which are given in the column labeled

min (BwS; FwS; BiS). This data is only provided for those cases where all three

(BwS, FwS, and BiS) were applicable. From the data in Table 4.6 one can see that

the sizes of the bidirectional dynamic chops can be signi�cantly smaller than the

sizes of the smallest slices of the BwS, FwS, and BiS dynamic slices. The numbers

in parentheses give the sizes of bidirectional dynamic chops as a percentage of the

sizes ofmin (BwS; FwS; BiS). As one can see in 6 cases out of 11, the size of the

bidirectional dynamic chop is less than half the size of the smallest of the BwS, FwS,

and BiS dynamic slices. Therefore bidirectional dynamic chopping is a very promising

technique.

4.5.4 Discussion

Finally lets summarize the bene�ts that the dynamic slicingtechniques studied pro-

vide to the programmer in carrying out fault location. Table4.7 summarizes the

number of lines in the fault candidate set (FCS) produced using the techniques de-

scribed earlier which when compared to the total lines of code (LOC) in the test

programs is very small. The numbers in parentheses are the sizes of FCS as a per-

centage of LOC. As one can see, in 15 cases this percentage is no more than 1%. In all

other cases it is a few percent. However, in a few cases the FCScontains a signi�cant

number of statements. In these cases the statements contained can be ranked accord-

ing to their dependence distances from the erroneous outputas proposed in [52, 88].

As a study in [88] illustrated, such ranking leads to the userhaving to examine less

than half of the statements in a backward dynamic slice. Finally, fault location tech-
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Table 4.7 . Summary of dynamic slice sizes.

Program LOC FCS (%LOC)


ex 2.5.31 (a) 26,754 27 (0.10%)
(b) 26,754 102 (0.38%)
(c) 26,754 5 (0.02%)

grep 2.5 8,581 86 (1.00%)

grep 2.5.1 (a) 8,587 25 (0.29%)
(b) 8,587 599 (6.98%)
(c) 8,587 12 (0.14%)

make 3.80 (a) 29,978 739 (2.47%)
(b) 29,978 1051 (3.51%)

gzip-1.2.4 8,164 3 (0.04%)
ncompress-4.2.4 1,923 2 (0.10%)
polymorph-0.4.0 716 3 (0.42%)

tar-1.13.25 25,854 45 (0.17%)
bc-1.06 8,288 102 (1.23%)

tidy-34132 31,132 161 (0.52%)

s-
ex-v4 12,418 7 (0.06%)
s-
ex-v5 12,418 544 (4.38%)
s-
ex-v6 12,418 156 (1.26%)
s-
ex-v7 12,418 63 (0.51%)
s-
ex-v8 12,418 280 (2.25%)
s-
ex-v9 12,418 112 (0.90%)

s-
ex-v10 12,418 574 (4.62%)
s-
ex-v11 12,418 27 (0.22%)
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Table 4.8 . Data slices (DS) and backward dynamic slices (BwS).

Program DS (Exec%) BwS (Exec%)

gzip-1.2.4 14 (11.86%) 34 (28.81%)
ncompress-4.2.4 13 (22.03%) 18 (30.51%)
polymorph-0.4.0 17 (37.78%) 21 (46.67%)
tar-1.13.25 44 (9.89%) 105 (23.60%)
bc-1.06 76 (11.95%) 204 (32.07%)
tidy-34132 148 (9.74%) 554 (36.47%)

niques such as those presented eventually require a programmer to spend e�orts in

understanding the cause of a failure and correcting the faulty code. This e�ort can be

reduced by using dynamic slicing based approach because notonly is the programmer

able to examine faulty code but also the statements on which the faulty code depends

and the statements that depend upon the faulty code. Examining the dependence

relationships is very helpful in understanding the cause ofthe failure. Finally it is

worth mentioning that the examples shown in earlier sections, which were taken from

the failures studied in the experiments, illustrated that locating the fault by exam-

ining the dynamic slices can be quite easy in some cases. Additional examples from

the considered bugs also illustrating a similar behavior can be found in case studies

presented in [84].

4.6 Other Types of Dynamic Slices

There are other types of dynamic slices than the ones discussed thus far. All the

previous discussed dynamic slices consider both data dependences and control depen-

dences during computation. If only data dependences are considered and the DDG is

traversed backward, the resulting slices are calleddynamic data slices(DS) [87, 88].

It is easy to identify that a program has been a�ected by a memory bug because

it crashes with a segmentation fault error. The programmer can use dynamic data

slicing instead of traditional backward dynamic slicing insuch situations. The reason
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why data slices are so e�ective for memory bugs is that the program crash is caused

by the presence of anunexpected dynamic data dependencebetween the point at which

memory is corrupted and the later point at which the corrupted value is used. In fact

the memory corruption typically corrupts a pointer and its use causes a crash because

it dereferences the pointer. Dynamic data slice captures all appropriate dynamic data

dependences including the unexpected dynamic data dependence and therefore it is

able to capture faulty code. To illustrate the above, let us review the example of

gzip in Figure 4.2. Since the unexpected dynamic data dependencefrom statement

40, where variableenv was de�ned by mistake, to statement 1344, where variable

env was used, is captured by the data slice, the bug can be easily located without

considering any control dependences. Data slices have beencomputed for the memory

bugs in Table 2.3 presented in chapter 2. All the memory bugs were captured by data

slices. In addition, as shown in Table 4.8, data slices are signi�cantly smaller than

backward dynamic slices. Thus, data slices instead of full backward dynamic slices

ought to be computed when a bug can be identi�ed as a memory one.

A backward dynamic slice may not be able to capture the error even though the

wrong output is actually caused by the error. Figure 4.9 gives an example. It is taken

from the gzipversion three provided by the website [2] of Siemens suite [43]. The error

is in the assignment tosaveorig name. The correct code issaveorig name=!no name.

In the failed run, since saveorig name contained the wrong valueFalse, branch S3

was not taken such thatf lags had the wrong value 0 while it should have been de-

�ned as ORIG NAME at S3. This wrongf lags value was �nally propagated to the

output �le. The backward dynamic sliceBwS of the wrong output does not contain

the error because S4 depends on S2. The fact that S4 could havehad a di�erent

value if S3 had taken the other branch can not be captured by the backward dynamic

slicing technique itself.

In such a case, a relevant slice is [33] computed instead which is larger than the

backward dynamic slice. Inrelevant slicing, a potential dependenceis introduced
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Figure 4.9 . Gzip v3 r1

between S4 and S3 such that S1 is reachable from the wrong output. However, these

potential dependence edges are introduced for each node in DDG which can result

in a much larger slice. Fortunately, in the real bugs studiedrelevant slices were not

needed and the backward dynamic slices were e�ective enoughto capture all of them.

In general, the same fact that certain code did not get executed while it should

have due to the bug may result in other types of the previouslydiscussed dynamic

slices such as forward slices and bidirectional slices precluding the root cause as well

[82].

4.7 Summary

In this chapter, two new types of dynamic slices were introduced { forward slices on

minimal failure inducing input di�erences and bidirectional slices on critical predi-

cates. These new types of dynamic slices, together with the traditional backward

dynamic slices, broaden the applicability of dynamic slicing. Because while all types

of dynamic slices may not be applicable in certain situations, it is highly unlikely

none of them is applicable. In addition, if multiple types ofdynamic slices can be

computed for a failed run, a much smaller fault candidate setcan be produced by

intersecting them. In 15 out of the total 23 bugs under study,the fault candidate

set is less than 1% of the lines of code. In 6 out of the 11 bugs for which the BwS,
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FwS, and BiS are all available, the intersection of the threetypes of slices, or the

bidirectional dynamic chop, is less than 50% of the smallestof the three types of

slices. In the subsequent chapters, it will be shown how value pro�les can also be

collected and used to further reduce the fault candidate sets.
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Chapter 5

Efficiency of Value Profiles

Earlier chapters discussed an e�cient representation of dependence pro�les as well as

its use in generating fault candidate sets. Next the exploitation of value pro�les will be

considered. In this chapter, an e�cient representation forvalue pro�les is developed

and in the next chapter it will be shown how value pro�les can be used to produce

smaller fault candidate sets. Value pro�les are compressedusing a two tier strategy.

First, redundancy is removed from the value pro�les in a similar fashion to dependence

pro�les. Second, a generic stream compression technique isdeveloped which provides

both a high compression rate and the feature of bidirectional traversibility.

5.1 Removing Redundancy in Value Pro�les

It is well known that subcomputations within a program are often performed multiple

times on the same operand values { this observation is the basis for widely studied

techniques for reuse based redundancy removal [70]. Next the same observation can

be exploited in devising a compression scheme for sequence of values associated with

statements belonging to a node in the WET.

The compression scheme can be illustrated using the examplebelow in which

the value of x is an input to a node and using this value, the values ofy and z are

computed. Further assume that while the node is executed four times, only two unique

values ofx (x1 and x2) are encountered in the value sequenceV als[0::3] = [x1x2x1x2].

Given the nature of the computation, the values ofy andz also follow similar patterns.

The value sequences can be compressed by storing each uniquevalue produced by a

statement only once in theUV als[0::1] array. In addition, the proposed scheme

remembers the pattern in which these unique values are encountered. This pattern
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is of course common to the entire group of statements. The pattern [0101] gives the

indices of values in theUV als[] array that are encountered in each position. Clearly

the V als[0::3] corresponding to each statement can be determined using the following

relationship.

V alues[i ] = UV alues[P attern[i ]]

Before
Statement V als[0::3]

x [x1x2x1x2]
y = f (x) [y1y2y1y2]

z = g(x; y) [z1z2z1z2]

After: Pattern=[0101]
Statement UV als[0::1]

x [x1x2]
y = f (x) [y1y2]

z = g(x; y) [z1z2]

The above technique yields compression because by storing the pattern only once,

it becomes possible to eliminate all repetitions of values in value sequences associated

with all statements. The ease with which the sequence of values can be generated

from the unique values is a good characteristic of this compression scheme. The com-

pression achieves space savings at the cost of slight increase in the cost of recovering

the values from WET.

In the above discussion the situation considered is such that all of the statements

shared a single pattern. In general, multiple patterns may be desirable because di�er-

ent subsets of statements may depend upon di�erent subsets of inputs that are either

received from outside the node or are read through input statements within the node.

Statements belonging to a node are subdivided into disjointgroups as follows. For

each statement the input variables that it depends upon (directly or indirectly) is

�rst determined. Groups are �rst formed by including all statements that depend

upon exactly the same inputs into the same group. Next if a group depends upon set

of inputs that are a proper subset of inputs for another group, then the two groups

are merged. Finally input statements within the node on which many groups depend

is included in exactly one of the groups. Once the groups are formed, for each group

a pattern is found and the values are compressed according tothe groups pattern.
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(b) After compression.

Figure 5.1 . Value compression.

In Figure 5.1 formation of groups for nodeP3 is illustrated. The �rst �gure shows

the value sequences associated with statements before compression. The statements

depend upon values ofu and v from outside the node and the value ofx that is read

by a statement inside the node. Two groups are formed becausesome statements

depend upon values ofx and v while other statements depend upon values ofx and

u. The statement that reads the value ofx is added to one of the groups. Once the

groups have been identi�ed, patterns are formed for each group as shown.
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5.2 Prediction Based Compression of Value Pro�les

In the next step of compression information labeling a WET can be viewed as con-

sisting of two streams of values arising from the sequence of< t; v > pairs labeling a

node: one corresponding to the timestamps (t's) and the other corresponding to the

values (v's).

The stream compression algorithm should be designed such that the compressed

stream of values can be rapidly traversed. An analysis algorithm using the WET rep-

resentation may traverse the program representation in forward or backward direction

(recall that is why all edges in WET are bidirectional). Thus, during a traversal, it is

expected that the pro�le information, and hence the values in above streams, will be

inspected one after another either in forward or backward direction. Unfortunately

most of the existing algorithms for e�ectively compressingstreams areunidirectional,

i.e., the compressed stream can be uncompressed only in one direction typically start-

ing from the �rst value and going towards the last. Examples of such algorithms

include compression algorithms designed from value predictors which were used for

compressing value and address traces in [16]. The problem with using aunidirectional

predictor is that while it is easy to traverse the value stream in the direction corre-

sponding to the order in which values were compressed, traversing the stream in the

reverse direction is expensive. The only way to e�ciently traverse the streams freely

in both directions is to uncompress them �rst which is clearly undesirable. Sequitur

[62] which was used for compressing control 
ow traces in [53] and address traces

in [21] yields a representation which can be traversed in both directions. However,

it is well known that Sequitur is not nearly as e�ective as theabove unidirectional

predictors when compressing value streams [16].

To overcome the above problem with existing compression algorithms, a novel

approach to constructingbidirectional compression algorithms is introduced. The ap-

proach can be used to convert anunidirectional value predictor based compression
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algorithm [16] into a bidirectional one. Lets consider the highly e�ective FCM pre-

dictor [72, 71]. A unidirectional FCM predictor compressesa stream in the forward

direction such that a value is successfully compressed if it can be correctly predicted

from its left context (i.e., pattern of immediately precedingn values); otherwise the

value is saved in uncompressed form. A look up tableTB is maintained to store

predictions corresponding to a limited number of left context patterns encountered

in the past. The index of the entry at which the prediction fora pattern is stored is

derived by hashing the pattern into a number.

If a value is correctly predicted by the look up tableTB using the left context, a

bit 1 is created in the compressed stream. If a predictionv provided by the look up

table TB using the left context does not match the valuev0 being compressed, then

a bit sequence of< v � 0 > is created in the compressed stream while the look up

table TB is updated usingv0 to enable future predictions. Herev denotes the bits

for v. Clearly for a stream compressed in the above fashion only forward traversal is

possible.

5.2.1 Bidirectional compression derived from the FCM predi ctor

Now lets look at the design of a bidirectional predictor. In particular, lets look at a

bidirectional counterpart of the FCM predictor [72, 71]. A bidirectional di�erential

FCM predictor [30] can be constructed in a similar way. Normal FCM is forward

compressed and thenforward traversed. If the direction of table lookup is changed

from using left context to using right context, which means future values are used to

predict the current value instead of previous values being used to predict next value,

a forward compressed andbackwardtraversed FCM can be constructed. Similarly, a

backwardcompressed andforward traversed FCM can be developed. A bidirectional

FCM(BFCM) can be achieved by using these two FCMs back to back.
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Before the introduction of the algorithms for bidirectional traversal of the value

stream, lets introduce the notation. Letm be the length of the uncompressed value

stream, n be the context size, a BFCM can be viewed as a tuple of< Strm; FRTB,

BLTB ; i; l; r; Context > where:

� Strm is the compressed bit stream composed of two substreams:FR and BL .

FR is obtained by compressing values at positions 1 through (i � 1) in forward

direction (F ) using right context (R). BL is obtained by compressing values at

positions (i + n) through (m � 1) in the backward direction(B) using the left

context (L).

� Context is a bu�er which contains the current context ofn uncompressed values

from position i to position (i + n � 1).

� FRTB is the lookup table forFR while BLTB is the lookup table forBL .

� Finally, l is the end bit position in Strm of FR while r is the starting bit

position of BL in Strm . The reason for providing extra bits (BUF ) between

positions l and r will be discussed in greater detail later { essentially these bits

provide extra space needed to accommodate the di�erences between forward

and backward compression rates.

There are four types of basic operations for a BFCM on which the traversal opera-

tions are built. FORWARD COMPRESS compresses a valuev into Strm starting at
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bit position l using FRTB. ParameterContext is the right context for v. The di�er-

ence between this operation and the forward compressing operation in a conventional

FCM is that FORWARD COMPRESS uses theright context instead ofleft context.

Using right context to compressforward provides the capability to uncompress in the

backwarddirection. BACKWARD UNCOMPRESS consumes bits in the backward

direction starting at l , which were generated earlier byFORWARD COMPRESS

operation, to uncompress the value to the left of the currentcontext. The other

two operations,FORWARD UNCOMPRESSand BACKWARD COMPRESScan be

constructed in a similar way. The details of all four operations are given in Figure 5.2.

To traverse one step forward, BFCM �rst forward uncompresses the value to the

right of Context, Ui + n , by looking at the bits starting at Strm r and then shifts

Context one step forward and uses the newContext to forward compress the value

to the left. Backward traversal can also be similarly de�ned. The implementation of

the traversal operations in terms of the four basic operations is given in Figure 5.3.

Note that it is assumed that a 32 bits machine is used. Hence ifa value is predicted,

it consumes one bit space, if not, it consumes 32+1 bits of space.

The example in Figure 5.4 illustrates the above algorithm. The �rst �gure shows

a portion of the uncompressed stream while the second �gure shows the state of

the stream and look up tables corresponding to four consecutive positions of the

context which consists of three uncompressed values. No matter whether the stream

is traversed forwards or backwards, the sequence of states encountered is the same.

5.2.2 Accounting for the di�erence in forward and backward c ompression

rates

One implementation problem arises due to di�erent prediction rates of the two FCMs.

As a result the amount of space needed to store the stream willvary at di�erent points

of the traversal. To handle this problem the design goal is toallocate enough extra
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Basic Operations
FORWARD COMPRESS(v; Strm; l; F RT B; Context )
(1) index = hash(Context )
(2) if F RT B [index] = v then
(3) Strm l:::l +1 = < 1 >
(4) l = l + 1
(5) else
(6) Strm l:::l +33 = < v � 0 >
(7) l = l + 33
(8) F RT B [index] = v
(9) endif

FORWARD UNCOMPRESS(Strm; r; BLT B; Context )
(1) b = Strm r

(2) r = r + 1
(3) index = hash(Context )
(4) if b = 1 then
(5) v = BLT B [index]
(6) else
(7) v = Strm r:::r +32

(8) r = r + 32
(9) BLT B [index] = v
(10) endif
(11) return v

BACKWARD COMPRESS(v; Strm; r; BLT B; Context )
(1) index = hash(Context )
(2) if BLT B [index] = v then
(3) Strm r � 1:::r = < 1 >
(4) r = r � 1
(5) else
(6) Strm r � 33:::r = < 0 � v >
(7) r = r � 33
(8) BLT B [index] = v
(9) endif

BACKWARD UNCOMPRESS(Strm; l; F RT B; Context )
(1) b = Strm l

(2) l = l � 1
(3) index = hash(Context )
(4) if b = 1 then
(5) v = F RT B [index]
(6) else
(7) v = Strm l � 32:::l

(8) l = l � 32
(9) F RT B [index] = v
(10) endif
(11) return v

Figure 5.2 . Four basic operations used by BFCM.
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Traverse
{ < Strm; F RT B; BLT B; Context; i; l; r > is the bit stream to traverse;
STEP FORWARD (Strm; F RT B; BLT B; Context; i; l; r )
(1) v = FORWARD UNCOMPRESS(Strm; r; BLT B; Context )
(2) t = Context [0]
(3) Context = Context [1:::n � 1] � v
(4) FORWARD COMPRESS(t; Strm; l; F RT B; Context )
(5) i = i + 1
(6) return v

STEP BACKWARD (Strm; F RT B; BLT B; Context; i; l; r )
(1) v = BACKWARD UNCOMPRESS(Strm; l; F RT B; Context )
(2) t = Context [n � 1]
(3) Context = v � Context [0:::n � 2]
(4) BACKWARD COMPRESS(t; Strm; r; BLT B; Context )
(5) i = i � 1
(6) return v

Figure 5.3 . Forward and backward traversal by a single step.

space so that at any point during traversal there is enough space available to handle

the stream. The space allocation is performed in a manner that at any point in

time the context (uncompressed values) are held in theContext bu�er while all other

values (forward and backward compressed values) are kept inStrm storage. The space

allocated betweenl and r in Strm (referred to asBUF ) is there to accommodate the

di�erence between forward and backward compression rates.For example, when the

cursor moves forward or backward by one step, it is possible that the value that is

uncompressed frees up one bit (i.e., the value had been compressed to one bit) while

the value that is compressed requires 33 bits (i.e., the value cannot be successfully

compressed). The additional bits allocated accommodate these extra bits. In fact

the BUF size is computed in such a way that whenever extra space is needed it is

available in BUF .

To ensure that there is su�cient extra space allocated inBUF so that forward

and backward traversals never cause the compressed stream size to over
ow the al-

located space, an algorithm is used as described in Figure 5.5. This algorithm �rst

forward compresses all the values into a temporary bit streamTmp. However,Tmp
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Figure 5.4 . Example of bidirectional FCM compression.
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is not bidirectional traversable yet. A backward traversalis performed to determine

the amount of additional space that needs to be allocated. Lines 13 to 17 in the

algorithm pre-allocate extra space. Conditionr < l + 33 being true means that

the next BACKWARD COMPRESSoperation may overwrite the bits generated by

FORWARD COMPRESSoperation previously, in other words, both the FCMs en-

counter low prediction rate and then the allocated space maynot be enough. In this

case, BFCM inserts some bu�er space betweenFR and BL . After backwardtravers-

ing Tmp once with allocating bu�er space to tolerate di�erent prediction rates, the

BFCM < Strm; FRTB; BLTB; Context; 0; l; r > is ready to be used for bidirectional

traversal.

Compress value stream
{ V als is the uncompressed stream;
{ T mp is a bit stream with INF INIT E length;
COMP RESS (V als; vLen)
(1) Context = V als[0:::n � 1]
(2) sLen = 0
(3) for i = 0 to vLen � n � 1
(4) Context = Context [1:::n � 1] � V als[n + i ]
(5) F ORW ARD COMP RESS (V als[i ]; T mp; sLen; F RT B; Context )
(6) endfor
(7) r = sLen
(8) l = sLen
(9) for i = vLen � n � 1 to 0
(10) v = BACKW ARD UNCOMP RESS (T mp; l; F RT B; Context )
(11) vcom = Context [n � 1]
(12) Context = v � Context [0:::n � 2]
(13) if r < l + 33 then
(14) T mp( r + EXT RA )::: (sLen + EXT RA ) = T mpr:::sLen

(15) r = r + EXT RA
(16) sLen = sLen + EXT RA
(17) endif
(18) BACKW ARD COMP RESS (vcom ; T mp; r; BLT B; Context )
(19) endfor
(20) Strm = T mp0:::sLen

(21) return < Strm; F RT B; BLT B; Context; 0; l; r >

Figure 5.5 . Preparing streams for bidirectional traversal.
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5.2.3 Bidirectional compression derived from a Last n predi ctor

Another predictor which has been used for unidirectional compression is the lastn

predictor [56, 17]. A bidirectional compression algorithmis also derived using the last

n predictor. This is because studies have shown that while overall performance of

both FCM and Last n predictors is quite good, there are also speci�c situationswhere

one predictor works well while the other does not and vice versa [16]. The full details

of bidirectional compression algorithm based upon lastn predictor are omitted due

to space limitations. However, the main cases of forward compression of a value are

summarized in Figure 5.6. Backward compression is similar.Unlike the bidirectional

FCM predictor only a single look up tableTB is used for both forward and backward

compression.

Uncompressed

iX = V

X != any V

(a) Successful compression of ith value (forward direction).

....................

TB

0 i n-1

V .... V .... V
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i-1 n-2X

.......... X - Vn-1
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Figure 5.6 . Bidirectional last n compression.

5.2.4 Selection

For each stream one is selected from several bidirectional versions of compression

methods. Initially all methods are used to compress the stream. After a certain

number of instances the method that performs the best up to that point is picked.
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The implemented methods include the FCM, di�erential FCM (this is an adaptation

of FCM that works on strides [30]), last n, and last n stride. For each type three

versions are created with di�ering context size.

5.3 Experimental Results

The experimental setting is the same as mentioned in chapter2. The two tier com-

pression strategy is �rst evaluated for value pro�les. Thenthe performance of the

compression scheme on dependence pro�les is also studied. Finally, the overall com-

pression e�ect on complete WETs is evaluated.

5.3.1 Compression of Value Pro�les

The �rst experiment is about compressing value pro�les using the two tier strategy.

Table 5.1 shows the sizes of node labels, timestamp and valuesequences, before and

after compression.

Table 5.1 . E�ect of compression on value pro�les.

Benchmark ts labels val s labels
Orig. Orig./ Orig./ Orig. Orig./ Orig./
(MB) Tier-1 Tier-2 (MB) Tier-1 Tier-2

099.go 2614.12 37.96 47.13 1847.09 2.48 6.33
126.gcc 1391.60 50.06 126.63 945.03 3.15 17.62
130.li 2822.26 32.47 105.88 1894.48 3.83 17.33
164.gzip 2481.32 30.33 152.76 1733.13 1.66 4.02
181.mcf 2728.12 22.12 127.09 1875.21 2.37 7.02
197.parser 2347.92 30.61 101.82 1615.57 2.05 12.45
255.vortex 2324.87 53.51 176.55 1641.31 3.51 23.82
256.bzip2 2865.81 55.24 1171.6 2154.85 2.46 10.61
300.twolf 2633.64 27.36 69.49 1873.52 2.13 4.36

Avg. 2467.74 37.74 230.99 1731.13 2.63 11.51

The above results show that while the average compression ratio of the ts labels is

very high, which is 231, the same is not true forvalue sequencesthat label the nodes

(compression ratio for these is only 11.5). Compression of values is much harder {

even though the value compression algorithm is aggressive,the compression ratios
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for value sequences are modest in comparison to those for timestamp sequences. The

main reason is that not as much patterns occur in value sequences as in timestamp

sequences.

5.3.2 Using Prediction Based Compression for Dependence Pr o�les

As described in chapter 2, dynamic dependences are represented by annotating a

static dependence edge with a sequence of timestamp pairs. In chapter 3, a series of

optimizations have been developed to eliminate redundancyin dependence pro�les,

which can ba considered as the �rst tier compression. After applying the optimiza-

tions, the remained sequence of< t s2 ; ts1 > on a dependence edge gives rise to two

streams, one corresponding to the �rst timestamps (ts2 's) and the other corresponding

to the second timestamps (ts1 's). Each of the above streams can be compressed using

the prediction based compression technique. Table 5.2 presents the results. Here

Tier-1 denotes the optimizations introduced in chapter 3.

Table 5.2 . E�ect of compression on dependence pro�les.

Benchmark Edge labels
Orig. Orig./ Orig./
(MB) Tier-1 Tier-2

099.go 5908.12 9.00 26.00
126.gcc 2901.26 15.37 118.94
130.li 5682.32 11.36 84.74
164.gzip 5473.42 10.13 60.37
181.mcf 5938.54 7.62 46.56
197.parser 4766.38 15.57 133.92
255.vortex 4781.46 21.75 212.35
256.bzip2 6900.52 32.06 455.44
300.twolf 6159.03 7.05 34.43

Avg. 5390.12 14.43 130.31

The results show that the prediction based compression provides very high com-

pression rates. Together with the redundancy removing optimizations (Tier-1), the

compression ratio is 130 on an average. The reduction of storage space is not the

sole goal. The other objective is to provide easy access to the compressed pro�les.
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Therefore, another experiment was carried out to compare the execution times of

backward dynamic slicing on the dynamic dependence graphs in their original forms

(Orig. ), after optimizations (Tier-1 ), and after optimizations and the prediction

based compression (Tier-2 ). In this experiment, the prior runs were cut at the

boundaries of from 114 and 139 Million intermediate level statements, which are very

close to the trace lengths used in previous sections. The average times needed to

compute a backward dynamic slice after tier-1 and tier-2 compression are a little over

14.34 seconds and 90.98 seconds respectively. While the optimizations in tier-1 only

speed up the slice computation, the slowdown incurred by thetier-2 compression is

reasonable given the gains in space savings. Note that the response times for the

099.go benchmark are higher than other programs. Due to the complexcontrol


ow structure of 099.go each node has several incoming edges and thus it takes

longer to identify the appropriate relevant edge during traversal.

Table 5.3 . Dynamic slicing on compressed DDGs (avg. over 25 slices).

Benchmark Stmts Executed Tier-1 Tier-2 Tier-2/
(Millions) (sec.) (sec.) Tier-1

099.go 132.52 58.31 412.44 7.07
126.gcc 139.46 10.91 17.74 1.63
130.li 126.78 10.00 121.42 12.14
164.gzip 123.06 4.20 102.33 24.34
181.mcf 137.31 17.47 76.07 4.35
197.parser 122.12 1.55 4.69 3.02
255.vortex 119.50 4.75 18.09 3.81
256.bzip2 128.25 2.76 3.90 1.42
300.twolf 114.85 19.10 62.15 3.25
Avg. 127.09 14.34 90.98 6.78

5.3.3 Overall Compression of WETs

In earlier experiments, the compression of individual typeof pro�les was evaluated.

It would be interesting to study the overall performance of the two tier compression
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strategy on complete WETs, which contain control 
ow, value, address, and depen-

dence pro�le information. The overall e�ect of the two tier compression strategy is

summarized in Table 5.4. While the average size of the original uncompressed WETs

(Orig. WET) is 9589 Megabytes, after compression their size(Comp. WET) is re-

duced to 331 Megabytes which represents a compression ratio(Orig./Comp.) of 41.

Therefore on an average the proposed approach enables saving of the whole execution

trace corresponding to program run of 647 Million intermediate statements using 331

Megabytes of storage.

Table 5.4 . WET sizes.

Benchmark Input Stmts Executed Orig. WET Comp. WET Orig./
(Millions) (MB) (MB) Comp.

099.go training 685.28 10369.32 574.65 18.04
126.gcc ref/insn-emit.i 364.80 5237.89 89.03 58.84
130.li ref 739.84 10399.06 203.01 51.22
164.gzip training 650.46 9687.88 537.72 18.02
181.mcf testing 715.16 10541.86 416.21 25.33
197.parser training 615.49 8729.88 188.39 46.34
255.vortex training/lendian 609.45 8747.64 104.59 83.63
256.bzip2 training 751.26 11921.19 220.70 54.02
300.twolf training 690.39 10666.19 646.93 16.49

Avg. n/a 646.90 9588.99 331.25 41.33

In Figure 5.7 the relative sizes of the three main componentsof pro�le data

(node timestamp sequences, node value timestamp sequences, and edge timestamp

sequences) are shown before compression (Original), after�rst tier compression (Af-

ter Tier-1), and after second tier compression (After Tier-2). As shown in the table,

the contribution of value sequences to the total size increases in percentage following

each compression step since the degree of compression achieved for value sequences

is lower.

Next the scalability of WETs is studied so that it can be estimated the limit on

the length of a program run for which the whole execution trace can be realistically

kept in memory. For this purpose the impact of trace length onthe compression

ratios is studied. In Figure 5.8, the executions are dividedinto ten intervals for each

benchmark (x-axis) and then the compression ratios (y-axis) are measured up to each
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interval. From the results in Figure 5.8 it can be noticed that for 7 out of 9 programs

the compression ratios either improve or roughly remain thesame as the length of

the run increases. For benchmark256.bzip2, a sharp decrease of the compress ratio

is observed from the second interval to the third interval. It is very likely due to the

switch of program phases. The new phase is substantially more di�cult to compress

compared to the previous one. As this phase �nishes, its e�ect gradually fades out

and the compression ratio gradually recovers.
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Lets assume that the compression ratio remains constant across the length of a

program run. Further recall that earlier experiments show that the compressed WET

for execution of 647 Million Trimaran intermediate code statements takes approxi-

mately 331 Megabytes of storage. Therefore it can be shown byextrapolation that the

WET corresponding to a program run involving execution of 3.9 Billion Trimaran in-

termediate code statements consumes 2 Gigabyte of space, which is the normal RAM

size for a workstation. It is a fairly long trace and thus can be used e�ectively in fault

location and studying program behaviors when designing compilers and architectures.

The times taken to construct the compressed WETs for the program runs are
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presented in Figure 5.9. Similar to the prior experiment, the executions were divided

into ten intervals with equal length and then the cumulativeconstruction times were

collected up to each interval. The results show that it takes200-300 minutes to

construct the WETs fully for most of the runs depending on theexecution lengths.

It can also be observed that the construction time increasesalmost linearly with the

execution length.
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Figure 5.9 . WET construction times.

5.4 Summary

In this chapter, a two tier compression strategy for value pro�les is introduced, it

provides a 11X compression rate and the feature of forward and backward bidirec-

tional traversibility. The second tier, which is a generic prediction based compression

technique, can be combined with the previously describeddynamic dependence graph

(DDG) optimizations to achieve 130X compression on DDG sizes. Dynamic slices can

be computed for executions ranging from 114-130 millions intermediate statements

on the compressed DDGs within 90 seconds.

Overall, the proposed two tier compression strategy can reduce the space con-

sumption of a WET by the factor of 41.33. The execution of 3.9 Billion Trimaran

intermediate code statements produces a compressed WET of 2Gigabytes. In other

words, the space e�ciency is around 4 bits per statement.
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Chapter 6

Pruning Backward Dynamic Slices Using
Value Profiles

In this chapter, a �ne-grained pruning technique of backward dynamic slices based on

value pro�les will be developed. The key observation is thatby carefully examining

the value pro�le, many of the statements in a backward dynamic slice can be deter-

mined to be highly unlikely to contain a fault. In this chapter, backward dynamic

slices refer to dynamic slices in the form of dynamic dependence subgraphs instead of

sets of statements. For ease of presentation, a di�erent formulation of dynamic depen-

dence graphs is used, in which each node corresponds to a single execution instance of

a statement and each edge to a single exercising of a dependence. As a result, there is

no need to refer to timestamps in order to distinguish between execution instances of

a statement or a dependence. Note that the presentation of this technique does not

distinguish between statement and statement instance. In other words, a statement

refers to a statement instance if it is not otherwise speci�ed.

6.1 Pruning Backward Dynamic Slices

This section gives an overview of the pruning technique. Given an observed incor-

rect value � o, a Pruned Backward Dynamic Sliceof � o, P DS(� o), can be com-

puted, which contains a subset of statements from theBackward Dynamic Sliceof

� o, DS(� o), that are likely to include faulty statements. Note that only the �rst

incorrect output is considered because the backward dynamic slice of this output

is usually the smallest among all the backward dynamic slices of incorrect outputs.

Therefore, it is very likely to produce a small fault candidate set by pruning such a
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slice.

It is observed that although DS(� o) contains all statement instances that are

involved in computing � o, not all of these statements are equally likely to be involved

in causing the erroneous behavior. In particular, let us consider a common situation

in which the program produces some correct outputs (
p

o's) before producing the

incorrect value � o. From the perspective of the
p

o's and � o, it is possible to divide

the executed statements inDS(� o) into two sets: May Set, DSmay (� o), containing

executed statements fromDS(� o) that are also involved in computing one or more

of the
p

o values; andMust Set, DSmust (� o), containing executed statements from

DS(� o) that were involved in computing none of the
p

o values. In other words:

DS(� o) = DSmust (� o) [ DSmay (� o)

DSmust (� o) = DS(� o) �
[

p 0
os

DS(
p

o)

DSmay (� o) = DS(� o) � DSmust (� o)

While the statements in theDSmust (� o) are always included in the pruned slice

P DS(� o), the ones in DSmay (� o) may or may not be included inP DS(� o). An

analysis is developed that computes for valuev computed by each statement execution

s 2 DSmay (� o) a con�dence estimateC(v@s) between 1 and 0. High con�dence

estimate for a statement execution indicates that it is highly likely that the statement

produced a correct value. Note that for simplicity it is assumed that one executed

statement de�nes only one value. one The con�dence estimates are computed using

the value pro�les of the executed statements. Athreshold con�dence� is set such

that only statement executions inDSmay (� o) that have a con�dence of less than�

are included in the pruned dynamic sliceP DS� (� o). In other words:
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Figure 6.1 . Pruning dynamic slice.

P DS� (� o) = DSmust (� o) [ DS �
may (� o)

where; DS�
may (� o) = f s st s 2 DSmay ^ C(v@s) < � g

It will be shown later that the analysis may yield con�dence values of 1 for some

statement executions and thus they are pruned from the dynamic slice irrespective of

the choice of� , i.e. they are never included inP DS� (� o) for all � .

Figure 6.1 illustrates pruning of dynamic slices visually. It shows a dynamic

dependence graph of a computation that produces two
p

o values before producing

the incorrect value � o. DS is the Dynamic Slice of � o. Subset of nodes inDS
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that form the Ideal Dynamic Slice(IDS) is shown { IDS originates at the point of

program error and contains only those statement executionsthat produce erroneous

values. The nodes inDS that are not present in IDS have been divided into three

categories. The nodes labeled� in DS belong to DSmust , as they are not involved

in computing the
p

o values, and thus they are always included inP DS the Pruned

Dynamic Sliceof � o. The remaining nodes inDS that are labeled with either
p

or

?. The
p

nodes have con�dence value of 1 and thus they are never included in P DS.

The nodes labeled ? have a con�dence value of less than 1 and thus the value of

threshold � determines whether or not they are included inP DS. The identi�cation

of
p

nodes is made possible by recognizing thatany change in the values produced

by such nodes would alter the output values that were known tobe correct. Therefore

it is assumed that these nodes must have produced correct values. As the �gure

shows, the smallest (largest) pruned dynamic slice that is produced by our algorithm

corresponds toP DSmin (P DSmax ). The key point to note here is that even if� is set

to 1, a pruned dynamic sliceP DSmax is obtained, which is smaller than the dynamic

slice DS. Note that P DSmin is actually what is known as adynamic dice[20] { as

the experiments later in this section show, often when faulty code is not captured by

the dynamic dice it is captured byP DSmax .

Next a motivating example will be presented, which shows howanalysis of code

and runtime information can be used such that the con�dence values of some state-

ment executions inDSmay is determined to be 1. Figure 6.2(a) shows an execution of

a program that follows the path corresponding to the true evaluation of the predicate

at node 4. The value shown to the right of each statement is thevalue computed

by the statement instance during execution. The dynamic dependence graph of this

execution is shown in Figure 6.2(b) { the solid edges are datadependence edges while

dotted edges are control dependence edges. The nodes in the dynamic slice of the

incorrect output value produced by statement 10 includef 0; 1; 2; 3; 4; 7; 10g. Now let

us see how the correct outputs produced by statements 8 and 9 are used to mark the
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nodes inDSmay as
p

or ?.

� From the correct output value ofX written by statement 8 it is inferred that

the values produced by statements 1, 3 and 5 are also correct.The reasoning

on which this inference is based is as follows. The statements 3 and 5 represent

one-to-one mappingsbetween the used operand values and generated result

values ofX . Therefore any change in the values produced by statements 1, 3 or

5 will cause the value of output at statement 8 to change. However, the value

of output at statement 8 is known to be correct. Thus, statements 1, 3 and 5

are marked with
p

indicating that they produce correct values. It is further

concluded that the true evaluation of predicateX > Y is also correct. This

is because ifX > Y would have evaluated to false, it would have produced a

di�erent output value for X at statement 8.

� Now let us consider the other correct output value written bystatement 9. Since

statement 6 does not represent a one-to-one mapping betweenits operand and

result, even though the value ofT that is produced by statement 6 is correct,

one can not assume that the value of operandZ used in statement 6 is correct.

As a result it is concluded that values produced by statements 0 and 2 may or

may not be correct and therefore they are marked with a ?. Notethat value

of Y generated by statement 0 has another use in the predicateX > Y . Even

though it has been determined that the predicate correctly evaluated to true, it

cannot be determined from this fact that the value ofY used by the predicate

is correct because many di�erent values ofY would have produced the correct

true evaluation of the predicate. Thus, from both uses ofY the same thing can

be concluded, i.e. the value ofY produced by statement 0 may or may not be

correct.

Given the above observations, the pruned dynamic slice of incorrect value output at

statement 10 will always include statements 7 and 10. More importantly it will never
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include statements 1, 3, 4 and 5. However, it may or may not include statements

0 and 2. The con�dence values for statements 0 and 2 will be compared with the

threshold � to make this determination. In other words:

DS = f 0; 1; 2; 3; 4; 7; 10g; IDS = f 2; 7; 10g

P DSmax = f 0; 2; 7; 10g; P DSmin = f 7; 10g

In the remainder of this chapter a con�dence estimation method will be discussed,

which will produce the following results. First for the above example it will produce

a con�dence value of 1 for values produced by statements 1, 3,4, and 5. Therefore

the pruning algorithm will correctly remove statements 1, 3and 4 from the dynamic

slice of the incorrect output value produced by statement 10. Second it will produce

con�dence values of less than 1 for statements 0 and 2 such that the con�dence value

of statement 0 is more than con�dence value of 2. Thus, depending upon the value

of � , three possible pruned slices will result:f 0; 2; 7; 10g, f 2; 7; 10g and f 7; 10g. The

computation of con�dence values will be performed using thevalue pro�les of the

executed statements (i.e., the operand values use and result values produced during

statement executions).

6.2 Con�dence Analysis

In this section an analysis will be developed, which will serve as the basis for pruning

a conventional dynamic slice. The goal is to develop aheuristic for pruning a dy-

namic slice such that the size of the dynamic slice is signi�cantly reduced and very

rarely is the erroneous statement mistakenly pruned from the dynamic slice. In other

words the objective is to signi�cantly reduce the size of theslice with minimal loss

in fault location e�ectiveness. As mentioned earlier, for ease of presentation, a di�er-

ent formulation of dynamic dependence graphs is used in which each node denotes a

single execution instance and each edge denotes a single exercised dependence. The

de�nition is shown as below:
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De�nition 2. The Dynamic Dependence Graph of a program run, DDG(N; E ),

consists of a set of nodesN and set of directed edgesE where: each nodeni 2

N corresponds toi th execution instance of statementn in the program; and each

edgemj ! ni 2 E corresponds to a dynamic data dependence or dynamic control

dependence ofi th execution instance of statementn on the j th execution instance of

statementm.

In other words, with the execution of each statement during aprogram run, a new

node is added to the dynamic data dependence graph and incoming edges to the node

from other nodes on which the new node is data and control dependent are introduced.

The execution of every statement during a program run results in the computation

of a result value. For an assignment statement this is the value assigned to the left

hand side variable during the execution while for a predicate statement the value is

either true or false corresponding to the result of predicate's evaluation. The dynamic

slice of a value computed by a statement is de�ned as follows.

De�nition 3. Given DDG(N; E ), a dynamic dependence graph, theDynamic Slice

of ni 2 N denoted by DS(ni ) is the subgraph of DDG(N; E ) which includesni as well

as all other nodes and edges from whichni is reachable, i.e.

DS(ni ) = ( f ni g; f eje = mj ! ni 2 Eg) [
[

8m j ! n i

DS(mj )

Consider a failed program run from which two kinds of evidence are collected:

negative evidencein form of the �rst incorrect value � o observed by the programmer

during the program run; andpositive evidencein form of some correct output values

(
p

os) generated during the program run before the incorrect value � o was generated.

Each relevant value, i.e. value that was involved directly or indirectly in computing

� o and/or
p

o values, is classi�ed into three distinct categories as de�ned below.
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De�nition 4. A relevant valuev generated by noden is classi�ed as:

�
p

or correct if it is used in computing at least one of the
p

o values but it is not

used in computing the incorrect value� o. Therefore the values computed by all

nodes in
S

p 0
os

DS(
p

o) � DS(� o) are classi�ed as
p

;

� � or incorrect if it is used in computing the incorrect value� o but it is not used

in computing any of the
p

o values. Therefore the values computed by all nodes

in

DS(� o) �
S

p 0
os

DS(
p

o) are classi�ed as� ; and

� ? or unknown if it is used in computing the incorrect value� o and at least

one of the
p

o values. Therefore the values computed by all nodes inDS(� o) \
S

p 0
os

DS(
p

o) are classi�ed as?.

As shown by earlier studies, dynamic sliceDS(� o) typically contains the erro-

neous code responsible for producing the incorrect value� o; however, it also includes

many statement executions that are not responsible for generating the incorrect value.

According to the above de�nitions, statement executions inDS(� o) will be initially

classi�ed into two categories { some will be classi�ed as� while others will be classi-

�ed as ?. The ones that are classi�ed as� are always included in the dynamic slice.

However, the analysis is performed to determine what subsetof statement executions

classi�ed as ? should be included in the pruned dynamic slice.

The decision as to whether the statement executions in the dynamic slice that

are classi�ed as ? should be included in the pruned dynamic slice is based upon

con�dence analysis. For every valuev computed by statement executionn, con�dence

analysis produces a con�dence estimateC(v@n) that measures the likelihood of the

value being correct. The con�dence estimateC(v@n) ranges from 0 to 1 where

C(v@n) = 0 indicates that one has no con�dence at all in the correctness of value
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v while C(v@n) = 1 indicates that one has the highest possible con�dence inthe

correctness of valuev@n. This estimate is de�ned as shown below.

De�nition 5. Con�dence estimate of valuev computed by a relevant noden is de�ned

as follows:

� if v is classi�ed as
p

(i.e., correct) then

C(v@n) = 1

� elseif v is classi�ed as� (i.e., incorrect) then

C(v@n) = 0

� elseif v is classi�ed as? (i.e., unknown) then

C(v@n) = 1 � logjRange(v@n)j jAlt (v@n)j

whereRange(v@n) represents all legal values ofv and Alt (v@n) � Range(v@n)

is a set of alternate values ofv such that if any value inAlt (v@n) was produced

by n, the same correct
p

o values would have resulted.

Let us discuss the reasoning behind theC(v@n) computation when v is classi�ed

as ?. If any change whatsoever in the value computed byn would cause at least one

of the
p

o values to change and hence become incorrect, then it is concluded that

the value v computed by n during the program run must have been correct. In this

case the setAlt (v@n) contains only one value. Therefore as desired, the con�dence

estimate C(v@n) = 1 � logjRange(v@n)j1 = 1. On the other hand, if changingv to

other values can still yield the same
p

o values, then we have less con�dence in the

correctness of valuev. As the setAlt (v@n) increases in size, the con�dence estimate

C(v@n) reduces and whenAlt (v@n) is equal to Range(v@n), then C(v@n) = 1 �

logjRange(v@n)j jAlt (v@n)j = 0.
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Before settling on the above de�nition of con�dence, other simpler de�nitions

of con�dence were also considered but they were found not be nearly as e�ective.

For example, a de�nition has been considered in which each value's con�dence was

proportional to the number of correct outputs whose computation depended upon

that the value. However, it was observed that in many cases di�erent outputs were

derived from di�erent values and thus many values were assigned the same con�dence.

In addition, this simpler method fails to exploit the knowledge that sometimes even

though a value may be involved in computing a single correct output, by looking at

the statements involved it may be possible to de�nitely determine that the value is

correct. For example, in Figure 6.2(b), since the value ofX output by statement 8 is

correct, it can be determined that the value ofX computed by statement 1 must be

correct. This is because the statements along the data dependence chain (4 and 5)

perform one-to-one mapping between old and new values ofX .

Next an algorithm is developed for computing con�dence estimates. While othe

de�nition of con�dence estimates is quite simple, computation of con�dence estimates

is made challenging by the need for deriving theRange(v@n) and Alt (v@n) sets for all

nodesn that are classi�ed as ?. There are two key problems that must be addressed.

First, given a variablex referenced by a program statements, the setRange(v@n) is

�rst de�ned, which is the set of legal valuesthat x may be allowed to take during its

reference by an execution ofs. Once such a legal set of values is determined for all

variable references, theAlt () sets will be computed with respect to these legal values.

Second, an algorithm must be developed for propagation of values. Starting from the

values classi�ed as
p

, the dynamic dependence graph is traversed in a bottom up

fashion to compute theAlt () sets of values classi�ed as ?. TheAlt () set of a value

classi�ed as
p

is initialized to the singleton set containing the value while the Alt ()

set of a value classi�ed as ? is computed by examining theAlt () sets of its child nodes

in the dynamic dependence graph.

Let us �rst discuss how the set oflegal valuesis determined for each variable
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S: Y = ..
if (..)

C1: X=Y+1
�
if (..)

C2: X=Y%2
�
if (..)

C3: X=Y+Z
�

Reference Value Pro�le

Y@S f 1,2,3,4,5,6,7,8,9g

Y@C1 f 7,8,9g
X @C1 f 8,9,10g
Y@C2 f 1,2,3,9g
X @C2 f 1,0,1,1g
Z @C3 f 9,9,5,5g
Y@C3 f 4,5,6,9g
X @C3 f 13,14,11,14g

Figure 6.3 . Value pro�les.

reference. A simple approach would be to use all possible values a variable can

take based upon its type (integer, char, boolean) or computea more accurate set

using static analysis (e.g., range propagation [14]). However, such an overestimate is

not very desirable for debugging because during debugging programmers are usually

dealing with a single program execution (i.e. the failed run) corresponding to a speci�c

program input. Therefore thevalue pro�le for the failed run is used to supply the set

of legal valuesRange().

De�nition 6. Given a reference (de�nition or use) to a variablev in a program

statement s, the value pro�le V P(v@s) provides an ordered list of values taken by

variable v during the multiple executions ofs in the failed run.

Essentially, V P(v@s) is equivalent to the vals stream of the dynamic

label sequence [< t s; vals > ] of node s. A program run generates a large number

of values and exercises a large number of dynamic dependences. Capturing this

history to perform dynamic slicing is a challenge already addressed by the techniques

introduced in the previous chapters.

Now lets consider the rules of propagation along data and control dependence

edges in the dynamic dependence graph. Intuitively, given an execution instance of

a statement, the values in theAlt () set of the result computed by the statement are

constrained by each of its children in the dynamic data dependence graph. Only
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those values can be put into theAlt () set that do not adversely impact any of the
p

o values along any chain of dependence edges from the executedstatement to any

of the
p

o values. Therefore,Alt () sets are also associated with dynamic dependence

edges and then theAlt () set for result value of an executed statement is simply

computed by intersecting theAlt () sets of edges leaving the statement. There are

two key operations involved in propagation. First fromAlt () set of a result computed

by an executed statement, the subset of legal values that theoperands can take is

computed such that these operand values produce result values contained in theAlt ()

set. Second theAlt () set of a result is computed by examining the subset of legal

values already determined at each of the uses of the result value.

{1,3,9}
1
3

C2
4

3
4C

Y = ... 9S9

9

(Write X) 10 o

X = Y + 1 10

X = Y % 2 1

o(Write X) 1
X = Y + Z

o(Write X) 14

14

Alt(Y@S ) = {9}

{5,9}

{9}

C

Figure 6.4 . Dependences among assignment statements.

Let us consider propagation along dynamic data dependence edges that connect

assignment statements (we will also consider predicate statements shortly). We illus-

trate propagation by analyzing the result value computed by9th execution instance

of statement S in the example from Figure 6.3. The value ofY computed byS9 is 9

and this value is used later by the 3rd instance of statementC1, the 4th instance of

statement C2, and the 4th instance of statementC3. The dynamic dependence will

therefore include three data dependence edgesS9 ! C1
3 , S9 ! C2

4 , S9 ! C3
4 . We

further assume that the values ofX computed byC1
3 , C2

4 and C3
4 are output and de-

termined to be correct. Figure 6.4 �rst shows how the potential values inAlt (Y@S9)

set are identi�ed by considering each dynamic data dependence individually. Given
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that C1 represents aone-to-one mappingbetween the value operandY and result X

(determined from value pro�les), theAlt () set assignment ofY at S9 constrained by

C1
3 , denoted byAlt (Y@S9 ! C1

3), contains 9. In contrast, since statementsC2 and

C3 do not representone-to-one mappingsbetween the value of operandY and the

value of result X , the setsAlt (Y@S9 ! C2
4 ) and Alt (Y@S9 ! C3

4 ) corresponding

to dynamic data dependence edgesS9 ! C2
4 and S9 ! C3

4 contain more than one

value. However, theAlt (Y@S9) is computed by intersecting the three sets for the

three dynamic data dependences yielding a set with only one element. Therefore the

con�dence estimateC(Y@S9) = 1 and therefore the value computed byS9 is marked

as
p

, i.e. correct.

From the above analysis two things can be observed. First, the presence of one-to-

one mappings is greatly bene�cial in pruning a dynamic slicesince they preventAlt ()

sets from expanding as propagation proceeds. Second, it is observed that as long as

their is one data dependence edge along which a computed can be veri�ed (i.e., its

Alt () set contains one value), the value is considered veri�ed.It will be shown later

that the approach is very e�ective because programs often contain many statement

executions that correspond to one-to-one mappings (e.g., copy operations, expressions

with two operands one of which is a constant etc.).

In the above example the propagation along dynamic data dependence edges is

considered and these edges were present between assignmentstatement executions.

Next it will be discussed how to handle the situation in whichpredicate evaluations

are present and hence dynamic control dependence edges are also present. There

are two points to be made here. First the value of a predicate is classi�ed as being

correct (
p

) if the value of one of its direct or indirect control dependent assignment

statements has been determined to be
p

. This is because if the predicate would have

evaluated di�erently the variable assigned by the control dependent assignment would

have had a di�erent value and hence it would have adversely a�ected on of the
p

o

values through its further uses. Second it should be noted that when the result value
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of a predicate is classi�ed as correct, it only means that theoutcome of the predicate

evaluation (true or false) is correct. However, since a predicate usually represents a

many-to-onemapping between its operand values and true/false result, it cannot be

inferred that the operand values are necessarily correct. The only thing one can say is

that the operand values are the subset of legal values for which the predicate produces

the same desired result, i.e. true/false. To illustrate theabove points a fragment of

the previous example is used as shown in Figure 6.5. The dynamic dependence graph

and the results of analysis are shown in the �gure. Note that the predicate evaluation

P1
9 is marked as

p
because its dynamic control dependent childC1

3 is marked
p

.

Alt (Y@S9 ! P1
9 ) also includes values 7 and 8 in addition to 9 as for these legal

values ofY, the predicateY > 6 evaluates to true just as it evaluates to true for the

value 9 produced byS9.

S: Y = ..
P1 :if (Y > 6)

C1: X=Y+1
�

1

Y = ... 9S9

Alt(Y@S ) = {9}
9

T

(Write X) 10 o

X = Y + 1 10

9P Tif Y > 6

{9} {7,8,9}

C1
3

Figure 6.5 . Dependences involving predicates.

The process described is summarized fully in the algorithm presented in Figure 6.6.

All nodes in the dynamic dependence graph that have been marked as ? are the ones

that are processed to compute their con�dence estimates. The Alt () sets for all

nodes are initialized to the set containing the valueval() produced by the node. The

nodes marked ? are then processed in a bottom-up order one by one. If a node

being processed is an assignment statement then theAlt () set for its result value

is computed, from which then its con�dence estimate is derived. Predicate nodes
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are processed by considering the markings on their dynamically control dependent

assignment statements. In Figure 6.6, the functionComputeAlt() presents the details

of the Alt () set computations which were described intuitively earlier.

6.3 Experimental Results

Table 6.1 . Characteristics of benchmarks

Benchmark Version Error in Failed Position
Cases Range

print tokens 1 switch-case 6 [14-495]
(565 LOC) 2 switch-case 143 [17-1707]

4 constant 23 [17-1209]
6 constant 143 [13-2714]
7 predicate 28 [8-1271]

print tokens2 4 assignment 268 [20-394]
(510 LOC) 5 return 67 [20-1106]

6 parameter 329 [20-870]
7 predicate 158 [27-486]
8 predicate 194 [60-928]

replace 1 predicate 24 [2-20]
(563 LOC) 3 predicate 130 [2-666]

6 loop condition 92 [2-609]
9 predicate 92 [2-609]
14 predicate 92 [3-49]
18 predicate 190 [2-380]
21 predicate 2 [18-40]

2-5 25 predicate 2 [3-11]
schedule 2 assignment 200 [2-38]

(412 LOC) 4 predicate 267 [2-39]
7 added code 20 [2-14]

schedule2 5 added code 32 [5-28]
(307 LOC) 6 constant 2 [10-18]

7 predicate 20 [2-16]
gzip 1 predicate 6 [19-19]

(7199 LOC)

ex 4 constant 12 [16885-53109]

(12418 LOC) 5 constant 257 [7130-9056]
7 constant 97 [6164-6164]
10 array index 6 [7142-7144]
11 predicate 513 [6867-43647]
15 constant 515 [13430-53895]
17 constant 315 [10632-51067]
19 constant 343 [20495-61777]

6.3.1 Benchmarks used

Table 6.1 shows the benchmarks used in the experimentation.The �rst �ve are known

as Siemens suite programs [43]. The last two unix utilities are also available from the
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Initialize: Alt (� )  f val(� )g;
for eachrelevant nodeSi marked ? in bottom-up order do

if Si is an assignmentX = :: then
ComputeAlt (Alt (X @Si ));
if jAlt (X @Si )j = 1 then

C(X @Si ) = 1; mark Si as
p

;
else

C(X @Si ) = 1 � logjRange(X @Si )j jAlt (X @Si )j
endif

elseifSi is a predicate then
if 9 Sj st Sj dynamically control dependent upon Si

and Sj is marked
p

then mark Si as
p

endif
endif

endfor

ComputeAlt (Alt (X @Si ))
Let the following dynamic dependence edges lead
from Si to nodes marked

p
or ?:

to assignments: Si ! C1
1i , Si ! C2

2i , ..... Si ! Cn
ni ;

to predicates: Si ! P1
1i , Si ! P2

2i , ..... Si ! Pm
mi .

for eachC j : Y = f (X ) st 9 Si ! C j
j i do

Alt (X @Si ! C j
j i ) = f v :

v 2 V P(X @C j ) ^ C j (X = v) 2 Alt (Y@C j
j i )g

endfor
for eachP j : f (X ) st 9 Si ! P j

j i do
Alt (X @Si ! P j

j i ) = f v :
v 2 V P(X @P j ) ^ P j (X = v) = P j

j i g
endfor
Alt (X @Si ) =

T

8j;S i ! C j
ji

Alt (X @Si ! C j
j i )

\
T

8j;S i ! P j
ji

Alt (X @Si ! P j
j i )

endComputeAlt

Figure 6.6 . Con�dence computation algorithm.
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same website [2]. This suite of programs was used because it provides several faulty

versions of the programs which have exactly one fault injected in them. The versions

used in the experiments are also indicated in Table 6.1. For each faulty version many

test inputs are provided [43]. Di�erent inputs result in di� erent position for the

�rst incorrect output in the output stream. The column position rangeof Table 6.1

gives the range of the position of the �rst observed wrong output. The greater is

the position number, the greater is the number of correct outputs produced before

the incorrect output. One can see that it is common for a certain number of correct

outputs to be generated in a failed run. In fact these numberscan be very high for

some inputs.

The test suite provides more versions than those used in the experiments. some

of the versions were excluded as they are not appropriate forexperimentation. Some

versions produced no output or the very �rst output producedwas wrong. Therefore

our approach was not applicable. In two kinds of situations the faulty statement was

not present in the dynamic slice itself and thus the e�ectiveness of pruning could not

be studied in such cases. First,code omissionfaults were present in some versions.

Since such faults were not even captured in the static slice of the output, they could

not be caught any by any dynamic slicing algorithm. Second, it was mentioned earlier

that a dynamic slice does not always include the erroneous executed statement. This

happens when the erroneous output is produced due to an incorrect evaluation of a

branch predicate causing execution of some statements to beincorrectly bypassed.

This situation can be handled byrelevant slicing[33, 88]. While in our experiments

such cases were omitted, later it will be shown how they can behandled by augment-

ing the technique.
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6.3.2 Con�dence-based Pruning

Since for some faulty versions there are many test inputs, and some of these may not

di�er much in their behavior, for each faulty version three test inputs were selected

such that varying number of correct outputs are generated before the incorrect output

is produced. Whenever possible, three runs were selected such that the wrong output

was observed at: the lower bound ofposition range in the �rst run; closest to the

middle of position rangein the second run; and at the upper bound ofposition range

in the third run. For each run, the dynamic slice of the wrong output was �rst

computed and then the slice was pruned using con�dence analysis. Six numbers

are presented about the slice sizes in Tables 6.2 and 6.3.All:P DS min , All:P DS max ,

and All:DS represent the number of DDG nodes inP DSmin , P DSmax , and DS.

The correspondingdistinct numbers (D:P DSmin , D:P DSmax , and D:DS ) denote

the number of unique statements in them (note that one uniquestatement may get

executed many times and result in many nodes in DDG). We also present the fault

location e�ectiveness in columnError In . Here I , X , and D indicate the presence

of erroneous statement inP DSmin , P DSmax , and DS respectively. The results are

also summarized by taking averages across di�erent versions of each benchmark in

Table 6.4.

From these tables, the following observations can be made:

1. The con�dence analysis greatly reduces the size of dynamic slice without sac-

ri�cing the fault location e�ectiveness. Table 6.4 shows the average factor by

which P DSmax is smaller thanDS ranges from 4:31 to 87514:33 (all) and 1:79

to 26:93 (distinct). For 
ex , the slices are so precisely reduced that they simply

contain the chain of dependences from the erroneous statement to the incorrect

output { this chain includes only a few statements.

2. For most of the versions, three runs were used and the relation between the
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Benchmark Version Wrong Output Pos. (All:P DS min (D:P DS min Error In
-All:P DS max )/ All:DS D:P DS max )/ D:DS

print tokens 1 14 (310-310)/712 (41-41)/72 IXD
301 (239-240)/4582 (40-40)/86 IXD
495 (317-317)/13603 (41-41)/134 IXD

2 17 (70-70)/429 (19-19)/61 IXD
231 (68-69)/3605 (18-18)/86 IXD
1707 (70-70)/44158 (19-19)/149 IXD

4 17 (246-246)/603 (40-40)/69 IXD
91 (212-212)/1965 (35-35)/92 IXD

1206 (263-295)/28513 (43-43)/141 IXD
6 13 (1457-1470)/1804 (44-44)/71 IXD

109 (214-214)/1993 (35-35)/97 IXD
2714 (432-432)/66651 (36-36)/145 IXD

7 8(1) (399-400)/698 (41-41)/74 IXD
92(1) (423-436)/1486 (41-41)/94 IXD

1271(1) (390-391)/27274 (37-37)/136 IXD
print tokens2 4 20 (174-174)/902 (40-40)/99 IXD

47 (447-447)/1561 (50-50)/95 IXD
394 (770-770)/8364 (44-44)/138 IXD

5 20 (499-499)/850 (58-58)/97 IXD
79 (364-364)/1013 (59-59)/109 IXD

1106 (285-285)/27841 (56-56)/154 IXD
6 20 (208-208)/680 (61-61)/95 IXD

34 (208-208)/770 (61-61)/97 IXD
870 (208-208)/18602 (61-61)/143 IXD

7 27 (697-698)/1290 (59-60)/96 IXD
75 (329-329)/1140 (53-53)/83 IXD
486 (1105-1105)/10630 (67-67)/148 IXD

8 60(1) (377-377)/2091 (59-59)/100 IXD
63 (377-406)/1676 (48-51)/105 IXD
928 (367-413)/20738 (48-51)/151 IXD

replace 1 2 (192-494)/2212 (38-77)/147 XD
9 (241-461)/1625 (53-81)/130 XD
20 (179-408)/1687 (44-64)/128 XD

3 2 (160-671)/1012 (32-86)/136 IXD
18 (89-89)/1997 (21-21)/155 IXD
666 (17-868)/18522 (3-45)/125 XD

6 2 (371-780)/1166 (45-62)/136 IXD
19 (216-648)/2129 (28-50)/132 IXD
609 (325-605)/20525 (46-49)/153 IXD

9 2 (180-357)/889 (40-61)/115 XD
26(2) (48-243)/3047 (18-42)/125 D

14 3 (289-656)/1187 (55-88)/138 IXD
9 (1006-1689)/2515 (73-117)/161 IXD
49 (103-112)/3021 (23-28)/111 IXD

18 2 (106-107)/669 (26-27)/109 IXD
35 (152-152)/4145 (37-37)/143 IXD
380 (194-194)/12588 (37-37)/127 IXD

21 18 (390-781)/2372 (53-86)/132 XD
40 (502-783)/3501 (42-59)/102 XD

25 3 (321-531)/975 (55-78)/120 IXD
11 (450-552)/2952 (72-84)/165 IXD

(1). Part of the wrong output appeared to be correct;
(2). The root cause was pruned.

Table 6.2 . Pruning e�ectiveness results of faulty versions for up to three test inputs.
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Benchmark Version Wrong Output Pos. (All:P DS min (D:P DS min Error In
-All:P DS max )/ All:DS D:P DS max )/ D:DS

schedule 2 2 (464-465)/1046 (65-66)/93 IXD
10 (621-623)/2155 (69-69)/118 IXD
38 (295-359)/6176 (55-55)/119 IXD

4 2 (1225-1468)/2605 (88-98)/119 IXD
10 (1025-1029)/2155 (85-89)/117 IXD

7 2 (386-399)/726 (67-68)/90 IXD
6 (83-284)/1124 (24-65)/105 XD
14 (84-330)/2146 (24-59)/97 XD

schedule2 5 5 (1152-1152)/1823 (64-64)/83 IXD
14 (195-195)/2594 (34-34)/73 IXD
28 (1896-1896)/5639 (60-60)/79 IXD

6 10 (230-230)/1611 (40-40)/67 IXD
18 (254-254)/2526 (42-42)/67 IXD

7 2 (80-145)/696 (27-36)/67 IXD
6 (113-129)/2871 (25-27)/94 IXD
16 (693-709)/3311 (59-61)/84 IXD

gzip 1 19 (82-394520)/1699490 (10-121)/357 XD

ex 4 16885(1) (13-14)/62235 (7-8)/692 IXD

19825(1) (16-17)/42823 (9-9)/648 IXD
53109(1) (13-14)/1120244 (7-8)/889 IXD

5 7130 (17-76)/23292 (6-18)/542 IXD
8925 (4-4)/81991 (3-3)/681 IXD
9056 (4-4)/59501 (3-3)/709 IXD

7 6164 (17949-18026)/22886 (217-229)/280 IXD
10 7142 (76-86)/84210 (19-23)/730 IXD

8925(1) (74-75)/1021249 (17-18)/786 IXD
11 6867 (15-15)/5756 (10-10)/81 IXD

16092 (15-15)/39484 (10-10)/552 IXD
43647 (15-15)/254532 (10-10)/720 IXD

15 13430(1) (71-71)/30002 (14-14)/824 IXD
16092(1) (71-71)/72756 (14-14)/988 IXD
53859(1) (96-96)/1120987 (19-19)/941 IXD

17 10632 (1-1)/22093 (1-1)/632 IXD
11584 (1-1)/86515 (1-1)/813 IXD
51067 (1-1)/1118733 (1-1)/864 IXD

19 20495(1) (35-54)/32219 (16-20)/764 IXD
21955(1) (35-35)/98133 (16-16)/947 IXD
61777(1) (32-33)/1130822 (15-16)/981 IXD

(1). Part of the wrong output appeared to be correct;

Table 6.3 . Pruning e�ectiveness results of faulty versions for up to three test inputs.
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Benchmark (All:P DS min � All:P DS max )/ (D:P DS min � D:P DS max ) All:DS / D:DS /
All:DS D:DS All:P DS max D:P DS max

print tokens (341-345)/1320 (35-35)/100 73.4 3.12
print tokens2 (428-433)/6543 (55-55)/114 19.53 2.09

replace (310-546)/4112 (43-60)/131 13.14 2.52
schedule (454-596)/3188 (56-70)/117 9.41 1.79
schedule2 (562-630)/2358 (50-58)90 6.58 1.69

gzip (82-394520)/1699490 (10-121)/357 4.31 2.95

ex (1232-1240)/342692 (25-27)727 276.36 26.93

Benchmark All:P DS max =All:P DS min D:P DS max =D:P DS min
IX X IX X

print tokens 1.01 NA 1 NA
print tokens2 1.01 NA 1.01 NA

replace 1.78 8.55 1.38 3.36
schedule 1.08 3.68 1.03 2.58
schedule2 1.54 NA 1.29 NA

gzip NA 4811.22 NA 12.1

ex 1.05 NA 1.04 NA

Table 6.4 . Summary of results across all versions.

pruning capability and the number of correct outputs was studied. From Ta-

bles 6.2 and 6.3 it is observed that the absolute sizes of theP DSs appear to

be independent of the number of correct outputs. However, the reductions in

the sizes ofP DSs with respect to the sizes ofDSs increase as the number of

correct outputs grow because of the increases in the sizes ofDSs.

3. It is observed that the fault location e�ectiveness ofP DSmax is very good. Even

though it is much smaller thanDS, only in one case the erroneous statement is

removed during pruning { this happened inreplaceversion v9 run r2. Figure 6.7

explains how this happened. In this run, statementi = i + 1 is wrong such that

'D' is assigned to the wrong position in arraypat. However, statementreturn


ag is veri�ed and thus 
ag=true; is veri�ed, which means the predicate is

correct. Since the predicate represents a one-to-one mapping to its operand

when it evaluates totrue, pat[j ] contains the correct value 'D'. According to

the analysis, the store topat[i ] will get veri�ed and so will the wrong index.

As is illustrated in the right hand side of Figure 6.7,pat[j ] being correct is

the result of both array pat and j being wrong. A plausible solution is not to
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infer the correctness ofj from the correctness ofpat[j ]. However, it becomes so

conservative that the e�ectiveness of pruning diminishes.
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Figure 6.7 . Replace v9 r2

4. Let us compareP DSmax with P DSmin . Although P DSmin works for a large

number of test cases, it was observed that in several cases, such asreplace v1,

v3, v9, v21and schedule v7, it prunes the erroneous statement whileP DSmax

does not do so. On the other hand,P DSmax works almost equally well for the

cases in whichP DSmin also works. As shown in Table 6.4, when the erroneous

statement is captured in bothP DSmax and P DSmin , corresponding to theIX

columns,P DSmax =P DSmin is roughly one, i.e. their sizes are nearly the same

(the entries marked NA are ones where there were no slices in that category).

Thus, using con�dence analysis to obtainP DSmax is an e�ective method for

both pruning the slice and maintaining the fault location e�ectiveness.

5. In some cases such as
ex v15, part of the wrong output appears to be correct

which may cause some confusion. For example,
ex v15 has the error ofprintf

("YY USER ACTION") missing a 'nn' at the end of the string. If we assume

the "YY USER ACTION" is correct, the wrong printf will get veri�ed. To solve

this problem, the output is divided into units, which is lines in this case, and

compute slice on the �rst character of the wrong unit.
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6.3.3 Enhancements to Pruning

With the help of a programmer. It is possible that P DSmax is still quite big.

However, pruning can be further carried out during debugging. During the course of

debugging the programmer usually investigates the values in gdband decides if they

are correct or wrong. This information can be fed back to the con�dence analysis

to enable further pruning. Similarly, the programmer can also look at the slice and

tell the system if certain values seem to be correct. An experiment was conducted

trying to simulate this procedure. Replaceversion v14 was picked, one of whose

three prunings (the third run) was quite successful and the relation from the error

to the wrong output could be understood. The largest pruned slice in the third run,

P DS3
max , was used as a reference to examine theP DS1

max of the �rst run. The �rst

statement instance which was inP DS1
max but not in P DS3

max was found and marked

as correct by the system.P DS1
max was further pruned to 587/74 (all/ distinct) from

656/88. After another two interactions, it was reduced to 93/23, which was very

close to dependence chain along which error was propagated.The same experiment

was also tried with replace v3{ the second run was used as a reference to prune the

�rst run and it was found that in only one step, the slice was reduced from 671/86

(all/ distinct) to 33/15 and it still contained the error.
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Figure 6.8 . Pruned dynamic slice for varying threshold (version Vi runRj).

Looking for a threshold. So far either P DSmin or P DSmax were discussed.

In this experiment, the relationship between the threshold� and the correspond-

ing P DS� 's size and its fault location e�ectiveness is studied. The results for three
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di�erent runs are plotted in Fig. 6.8. As expected, theP DS� drops in both size

and fault location e�ectiveness as� decreases. However, the existence of such a�

that nicely balances between the size and fault location e�ectiveness was not observed.
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Figure 6.9 . Locating fault by examining statements in increasing order of con�dence
values.

Prioritization based on con�dence. As mentioned earlier, it was observed

that the most e�ective pruning strategy is one in which only the statements with

con�dence values of 1 are pruned from the dynamic slice to produceP DSmax . Next

an additional use of con�dence values is studied. The statements in P DSmax are
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prioritized in the order of increasing con�dence values. To locate faulty code, the

statements are then examined by the programmer in the order of increasing con�-

dence values till the faulty code is encountered. The e�ectiveness of this strategy is

measured in terms of the percentage of executed statements that are examined by

the programmer before encountering the faulty code.

In prior work it was shown that an e�ective strategy for exploring dynamic slices to

locate the faulty code is to examine the statements in the dynamic slice in increasing

order of their dependence distance from the point at which the erroneous value is

encountered during a failed run [88, 84]. An experiment was conducted in which the

e�ectiveness of two strategies were compared: exploring dynamic slice in order of

increasingdependence distances(DD); and exploring pruned dynamic sliceP DSmax

in the order of increasingcon�dence values(CV). When using the con�dence value

based strategy, if two statements with same con�dence valueare present, then the

dependence distance is used as the tie-breaker.

The results of this experiment are given in Figure 6.9. For a given point in each

graph, the y-axis represents the fraction of faults locatedwhile the x-axis represents

the percentage of executed statements examined to locate these faults. The results are

the averages over the three failed runs that were used in the experiments presented

in the preceding section. As one can observe, for a given percentage of executed

statements examined, typically the fraction of faults thatare located is higher for

CV in comparison toDD .

6.4 Summary

In this chapter, a novel approach for pruning dynamic slicesusing positive evidence

was introduced, which exploits program state information in terms of observed values

of variables in addition to the dynamic dependence information as is done tradition-

ally in dynamic slicing. A simple analysis was developed to estimate a con�dence
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value for any computed value. Due to a fairly large number of executed statements

that represent one-to-one mappings between an operand and the result, the highest

con�dence value of one is obtained for a large number of computed values. As a

result, even the largest pruned dynamic slice computed is signi�cantly smaller than

the conventional dynamic slice. The number of distinct statements in P DSmax is

1.79 to 26.93 times less than the corresponding number inDS. Con�dence analysis

was not evaluated on the real bugs introduced earlier because most of those faulty

programs do not produce any correct output. Therefore, eventhough it is strongly

believed by the author that it is very common for a failing runto produce partially

correct output in real life, further empirical studies should be carried out in future.

More importantly, if both negative and positive evidences are collected in one single

failing run, further reduction on the fault candidate set can be achieved. In the next

chapter, it will be shown how even longer program runs can be handled by identifying

relevant intervals of execution and then limiting slicing only to these intervals.
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Chapter 7

Dynamic Slicing of Long Running
Programs

The optimization and compression techniques discussed in earlier chapters achieve

the space e�ciency of 4 bits per instruction. A simple task asstarting Mozilla and

browsing a html page may create traces with the size of a few giga bytes. In other

words, tracing based techniques, such as dynamic slicing, can handle executions up to

a few seconds given the speed and storage capacity of today'sworkstations. Realistic

executions with the lengths of minutes, hours, or days seem to be far beyond the

capability of dynamic slicing given all the advances. This chapter discusses a plausible

solution.

7.1 Overview

While a naive solution is to divide the entire execution by checkpoints, and then apply

dynamic slicing enabled by tracing on one checkpoint interval at a time. However,

this solution is not as simple as it appears for two reasons. First, tracing requires in-

strumenting the original program. There are two kinds of instrumentation techniques

{ static and dynamic. Static instrumentation, in which the program is instrumented

by compilers, introduces non-trivial execution overhead as tracing cannot be easily

turned o�. Dynamic instrumentation adaptively instrument s the program. It can

easily switch from executing the original code to executingthe instrumented code or

vice versa. Dynamic instrumentation engine usually resides in the process's virtual

space and manipulates the virtual memory intensively such that the status of the

application process is substantially mixed with the instrumentation engine's status.
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While checkpoints are often produced by taking snapshots ofthe virtual memory, it

becomes hard to discretely checkpoint the application process. Second, tracing can

handle executions up to a few seconds. In contrast, checkpointing usually produces

virtual memory snapshots with the size of a few mega bytes, itis not something that

can be easily a�orded to perform every second. Checkpoints are usually created in

the interval of, more or less, minutes. The gap between seconds and minutes suggests

that it is still too costly to trace a checkpoint interval.
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Figure 7.1 . Execution fast forwarding.

Figure 7.1 gives an overview of the idea. The left part illustrates that an execution,

or part of an execution delimited by checkpoints, is usuallyheavily instrumented for

the purpose of dependence tracing. The heavy instrumentation introduces very high

runtime overhead and constructs a huge dependence graph, which makes it impractical

if the execution gets long. In the right part anexecution fast forwardingtechnique

takes advantage of the characteristics of many long runningprograms { being driven

by events. More precisely, it �rst collects a full event log from the original execution;

given a speci�c part of the execution that the programmer wants to replay, a meta

slicing technique, which is analogous to dynamic slicing but performed on logged

events instead of executed instructions, is applied to prune the events irrelevant to

replaying the desired execution region. The reduced event log is used to drive the

replay. Compared to the original run, thefast forwardedexecution is much smaller
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as the volume of events passed to the program is much lower. Asa result, a smaller

dependence graph is generated that can be collected throughtracing.

7.2 Execution Fast Forwarding

Often when a program runs for a long time it is not because it performs a very

long and complicated task. Instead, it is often because the program processes a long

sequence of simple tasks. For example, programs processingstreaming data such

as audio, video, and packet data usually carry out the same computation e.g. FFT

transformation on a sequence of data; the computation on each data piece tends to be

relatively lightweight and independent from each other. Programs that require user

interactions display similar properties: the programs spend most of their execution

time in handling user actions and the computation dedicatedfor each user action

is usually simple. Server programs deal with thousands of requests, most of which

set o� simple computations such as reading a �le or retrieving a piece of data from a

database. A common feature of these programs is thatthey are driven by events. The

events divide the whole execution into small tasks, each oneof which corresponds to

handling some event. An event is de�ned as one interaction between the application

and the OS. The interaction could be in the forms of: system calls such asopen, read,

and mmap2; asynchronous or synchronous signals such askill and segfault. These

events are used to provide OS services, for instance reading/writing a �le/socket, to

the application program, or to notify something has happened.

An execution fast forwarding(EFF) technique is derived from the following ob-

servation { all the events do not need to be replayed in order to replay a particular

part of the execution. Given the fact that the execution is driven by events, we may

be able to shrink the replayed execution, and yet reproduce the desired part, if the

irrelevant events can be pruned.

Figure 7.2 presents a motivation example. In the original run, the key 'c' was
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Figure 7.2 . Getting the same warning message by replaying the reduced log for
Mutt 1.4.2.1i. The numbers mean the byte positions of the corresponding events in
the log.

�rst pressed in order to change the folder name after Mutt, a text based mail user

agent, was started; string "imaps://xyz- hang@email.cs.arizona.edu/inbox" was typed

in as the email account, which was followed by the password; after logging in the

account, a couple of email messages were accessed; then 'c' was typed again and

string " Hello" was provided as the new folder name. Since "Hello" was not a valid

folder name, a warning message was printed on the screen. Theevents were logged

in a �le as shown on the left hand side of the �gure. The �rst a few thousands of

events present the startup phase of the execution, which is mainly about loading
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dynamic libraries, allocating virtual memory, and initializing the program state. The

shaded events starting from byte position 4898 to position 594803 correspond to

the execution related to accessing the email account. Events starting from 594804

contribute to entering the invalid folder name and the warning message was printed

by the event at 595007. Let us assume the programmer is interested in reproducing

the warning message. Apparently, replaying the entire execution with the full log is

an option but not the optimal one. For the event at 595007 to becorrectly replayed,

we need to replay events at 594804, 594825, ..., 594890, etc.Events from 4898 to

594803 are actuallyirrelevant to replaying the event at 595007. We constructed a

new log by removing all the irrelevant events and then drove the replay with the

reduced log. The same warning message was successfully reproduced. The execution

was actually fast forwardedto the desired point by skipping the irrelevant part.

The EFF technique poses two challenges. The �rst one is how toidentify and

remove the irrelevant events; the second one is how to replaywith the reduced event

log. The following subsections describe how we handle theseissues.

7.3 Event Dependence Graph

In dynamic slicing, given a value that is observed to be incorrect by the programmer

(incorrect value may correspond to an incorrect output or a value that causes the

program to crash). A set of executed statements that contributed to the value of

the speci�ed variable are computed as its dynamic slice. Theexecuted statements

not in the dynamic slice are not relevant to the investigatedvalue. An analogous

solution can be applied on the executed events to identify the set of irrelevant events

for replaying a given execution region.

As an event usually corresponds to multiple executed statements, it is important to

understand how we deal with events during the construction of a DDG. Since an event

is usually handled inside the OS kernel, a tracing engine which runs in the application
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space is not able to trace into the kernel. Hence the dependences within the event

handler are not captured. The solution is to summarize the execution of an event

into an abstraction, E j (U; D), according to the speci�cations of events. For instance,

event "n=read(fd, Buf, size)" can be abstracted as "...(U = f fd, seekpointer(fd),

size, Bufg, D = f seekpointer(fd), Buf[0], Buf[1], ... Buf[n-1] g. Note that only the

�rst n elements ofBuf are de�ned according to the speci�cation of eventread. This

event both de�nes and uses the seek pointer of �lefd.

An event dependence graph(EDG), can be constructed to reveal the dependences

within events, which can be later on used to prune the irrelevant events.

De�nition 7. The Event Dependence Graph of a program run, EDG(N; E ),

consists of a set of nodesN and a set of directed edgesE where: each nodeni 2 N

corresponds to thei th execution instance of eventn in the program; and each edge

mj ! ni 2 E denotes that there exists a dependence path frommj to ni , and there

are no other executed events thanmj and ni on the path.
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Figure 7.3 . An example of dynamic dependence graph (DDG) and event dependence
graph (EDG).

Figure 7.3 presents an example to illustrate a DDG and the corresponding EDG.

The left hand side presents the DDG for the execution of a small piece of code.

Statement executions 21 and 41 data depend on 11 because they use the �le descriptor

de�ned at 11. 41 data depends on 21 because 21 changes the �le seek pointer. The

graph on the right hand side shows the EDG. Event executionE31 depends onE21
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because of the dependence path 21 ! 41. Event executionE41 depends onE21 due

to the dependence path 21 ! 31 ! 51 ! 61. Note that the read eventsE2 and E3

are considered as di�erent events because they occur at di�erent program locations.

Control dependence between statements can also lead to dependence between

events as demonstrated by another example in Figure 7.4, where event E31 depends

on event E21 as the result of 301 control depending on 211 and 211 data depending

on 201. The dependence betweenE21 and E31 belongs to control dependence as the

execution ofE31 is due to the result ofE21. However, in EDGs data dependence and

control dependence edges are not distinguished.

Precisely constructing the EDG requires accurately tracing each dependence (data,

control, and potential). According to the previous experience, exactly tracing data

and control dependences on the 
y results in a slow down of up to two orders of

magnitude. Thus, building precise EDG is a luxury that becomes worthy only when

the cost can be amortized by a large number of replays. Otherwise, programmers

would rather replay the entire log, which is equivalent to doubling the execution time,

than endure the two orders of magnitude slow down in the �rst place and attain speed

up in just a few replays later on. To address this issue, we have to be conservative

by constructing an approximate EDG, in which one event depends on the other if

and only if they are related by astatic dependence path. In other words, only a

static dependence graph is demanded, instead of a dynamic one, together with the

event log to build the approximate EDG. The only runtime overhead paid is for event

logging, which is signi�cantly cheaper than tracing each dependence. Because the

dependences between events are usually much simpler than the dependences between

normal statements, which can be highly complicated due to pointer aliasing, being

conservative in EDG construction introduces much less imprecision compared to being

conservative in building DDG.
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7.3.1 Meta Slicing on Event Log

Similar to dynamic slicing, given an EDG and an event, which the programmer wants

to reproduce, meta slicing on the EDG computes the set of events that are needed in

order to replay the given event.

De�nition 8. Given EDG(N; E ), an event dependence graph, theMeta Slice of

ei 2 N denoted by MS(ei ) is the subgraph of EDG(N; E ) which includesei as well as

all other nodes and edges from whichei is reachable, i.e.

MS(ei ) = ( f ei g; f eje = mj ! ei 2 Eg) [
[

8m j ! ei

MS(mj )

For example in Figure 7.3, MS(E41) = f E11; E21; E41g. Note that we ignore

the edges in MS for simplicity. We need to replayE11, which opens the �le, and

E21, which reads some data from the �le, in order to correctly replay E41, which

prints some value resulted from the computation over the input data. In Figure 7.4,

MS(E31) = f E11; E21; E31g. E21 has to be replayed otherwise the control would not


ow to E31.
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Figure 7.4 . Another example of event dependence graph.

So far, how to �nd the set of relevant events in order to replaya given event has

been discussed. However, in reality it could be a speci�c executed statementnj that

the programmer wants to replay. In this case, the set of closest events reachable from

nj in the DDG, denoted as ECut(nj ), need to be identi�ed and then the meta slices
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need to be computed on these events. For example in Figure 7.4, ECut(401) = f 201g,

the corresponding meta slice MS(201) = f 101; 201g. Intuitively, both E11 and E21

need to be replayed in order to replay statementS1.

7.4 Replaying with A Reduced Event Log

It has been described how meta slicing can be applied to identify the set of events

in the log that are relevant to replaying given part of the execution. However, meta

slicing is not yet the ultimate solution. It is often the casethat a meta slice can

not be used directly to drive the replayed execution. For example, in Figure 7.3,

MS(E41) = f E11; E21; E41g. Replaying with the meta slice fails becauseE31 was

expected when the control 
ows to statement 41. This suggests that some events, even

though irrelevant to replaying the desired part of the execution, cannot be pruned

due to the control 
ow structure. Next, it will be explained how an event log is

reduced with regard to the meta slice and the intrinsic control 
ow structure of the

application.
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Figure 7.5 . An example on reducing the event log. The shaded events are those in
MS(941).
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Before presenting the algorithm, let us �rst study an example that clearly explains

how it is made possible to reduce a log without losing the validity. In Figure 7.5, the

program displayed in the left column takes user commands from stdin. Di�erent

actions are taken based on di�erent commands. For instance,messages are printed

on the screen if 'a'/' c' is pressed; a �le is opened if 'o' is pressed; the opened �le

is read if 'r ' is read; if the data read does not match the size required, anerror

message is delivered. The event log for a particular execution is presented in the

right column. During the execution, a �le is opened and then read for twice; the

second read does not satisfy the size wanted such that an error message is printed at

941; in between of these events, a number of events happen as the results of 'a'/' c'

being pressed. Let us assume 941 is the event we want to replay. MS(941) is denoted

as the shaded events in the log. Apparently, the meta slice isnot legitimate for replay

as event 51(gettimeofday), which is not in the meta slice, is expected at the beginning

of the replayed execution. While 51 is not removable, events 201 and 311 can be

removed without any problem. The important observation here is that 202 and 201

are compatibleand thus 202 can be moved up to replace 201 such that the event in

between, 311, is pruned.

De�nition 9. An event executionei is compatible with another event executionej i�

their calling contexts are identical and they occur at the same program point.

All the events 20x in Figure 7.5 are compatible to each other. This example

suggests we are able to alter the replayed execution by replacing an event with its

compatible peer. The algorithm to reduce a log given the metaslice is presented as fol-

lows. Get next event() gets the next event from the log �le; getnext marked event()

gets the next event belongs to the meta slice, which we assumeis precomputed, in

the log �le. These two methods share the same �le seek pointer, which can be set by

set �le pointer(...).
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Input: the original log Log
Output: the reducedlog RLog
Initialize: RLog  �
while (em =get next marked event(Log))!=EOF do

e=get next event(Log)
for eachet from e to em in Log do

if et :context � em :context then
goto L 1

endif
Rlog  Rlog � et

endfor
L 1:

Rlog  Rlog � em

set �le pointer(Log, em )
endwhile

The basic idea of the algorithm is that given a marked eventem , an event in the

meta slice, the earliest compatible eventet is found in betweene and em s.t. moving

em up to replaceet maximizes the savings. All the events betweene and et including

e are copied to the new log to satisfy the control 
ow structurecon�nement. The

events betweenet and em are discarded.

Table 7.1 presents the reduction procedure of the example inFigure 7.5. As shown

in the table, during iteration one, 51 is the �rst event retrieved from the log, and 202

is the �rst marked event. 202 can be moved up to replace 201 such that 51 and 202 are

the two events appended to the new log. During the second iteration, 801 is the next

event and also the next marked event such that it is simply copied to the new log. In

iteration three, moving 205 up to replace 203 results in cutting the events from 203

to 501. The �nal reduced log is shown in the last row of the table. Thereduce log

can be used to drive the replayed execution to reproduce the error message at 941.

7.5 Experimental Results

A few issues need to be address in order to carry out the evaluation. The �rst issue

is that what benchmarks should be used. The selected programs should be able to
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Table 7.1 . Computation table for �gure 7.5.

Iteration e em RLog
1 51 202 51 202

2 801 801 51 202 801

3 203 205 51 202 801 205

4 911 911 51 202 801 205 911

5 206 208 51 202 801 205 911 208

6 912 912 51 202 801 205 911 208 912

7 931 941 51 202 801 205 911 208 912 931 941

run for a long time. We looked at the set of bugs studied in [59,67, 65] and picked

the programs that can execute for a long time. Table 7.2 presents the set of selected

programs. Most of them are user interactive programs. The second issue is how

to obtain the input that can drive the execution for a long time and then crash the

execution. On the other hand, the execution should not be so long that it becomes too

heavy a task to collect the data. Unfortunately, the input coming with the selected

bugs usually leads to very short executions. Given the fact that most benchmarks are

interactive, a long input was constructed by �rst performing a lot of user actions and

then apply the failure inducing input {the input comes with the benchmarks. For

example inmutt, the following actions were taken: (i) opening an email account; (ii)

going through all the emails one by one, the total is about sixhundreds; (iii) trying

to switch to an invalid folder; repeating steps (ii) and (iii) two more times; providing

the failure inducing input and crashing the program. The user time was collected

as the performance indicator since the real time may signi�cantly di�er each time

depending on the user's behavior.

Four execution scenarios were investigated:orig. denotes the original execution;

traced denotes the original execution plus the dependence tracing; loggedrepresents

the original execution plus logging;EFF represents the fast forwarded execution plus

the dependence tracing. In the logged run, an event log is created. The EFF technique
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Table 7.2 . Description of the benchmarks

Benchmark Description LOC Bug Type

bc-1.06 interactive calculator 14.4K heap over
ow
mc-4.5.55 �le manager 86.2K stack over
ow

mutt-1.4.2.1i email client 453.6K heap over
ow
pine-4.44 email client 211.9K stack over
ow
pine-4.44 email client 211.9K heap over
ow
squid-2.3 web proxy cache server 93.5K heap over
ow

is applied to reduce the log. The statement instance we want to replay is where the

crash happened. The EFF technique is able to reproduce the crash in a much shorter

execution. Due to the complexity of the system, the implementation is not sound

at the current stage. Some times a few event dependences had to be hard coded,

otherwise the reduced log was not valid to drive the replay which was manifested as

an event missing when it was expected or the presence of an extra event.

Table 7.3 . Performance comparison of di�erent execution scenarios.

Benchmark Orig. Traced Traced Logged Logged EFF Traced
(sec.) (sec.) /Orig. (sec.) /Orig. (sec.) /EFF

bc-1.06 13.6 2040.4 150.6 16.2 1.19 0.05 40808.8
mc-4.5.55 10.28 417.8 40.64 13.47 1.31 0.05 8356

mutt-1.4.2.1i 19.7 3237.7 164.5 26.1 1.32 0.06 53960.8
pine-4.44(stack) 14.4 2088.4 145.1 36.8 2.55 0.12 17403.6
pine-4.44(heap) 13.9 2102.2 151.5 34.4 2.47 0.20 10510.9

squid-2.3 14.6 1131.6 77.3 25.6 1.75 0.17 6656.4

Table 7.3 compares the performance under the four scenarios. The original runs,

which were terminated by crashes, consume execution times ranging from 10.2 to

19.7 seconds, which correspond to the real times of a few minutes. They are not long

by simply looking at the raw numbers, but they well exceed thecapability of the

dependence tracing technique. The executions can be easilyextended by repeating

the user actions. The side e�ect is the increased di�culty ofcollecting the time

for the executions in thetraced scenario. Note that even though checkpointing is

supported in our system, the original execution does not last long enough to trigger
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it. Fortunately, it does not a�ect the evaluations of the EFF technique and the

e�ectiveness of dynamic slicing on long running programs. From table 7.3, we have

the following observations.

� Dependence tracing introduces 40.46 to 164.5 times slow down. A programmer

may accept it for a short run but highly unlikely for a long run.

� The slow down factors for logging range from 1.19 to 2.55, which are signi�cantly

smaller than the tracing slow down factors. For user interactive programs, the

overhead is not noticeable.

� EFF can greatly shorten the executions such that dependencetracing becomes

bearable.

Table 7.4 . Comparison of the event logs.

Benchmark # of events in Orig. # of events in EFF Orig./EFF

bc-1.06 340509 7 48644.0
mc-4.5.55 322172 16020 20.1

mutt-1.4.2.1i 262559 489 536.9
pine-4.44 7365830 3028 2432.6
pine-4.44 8707316 27279 319.2
squid-2.3 1620988 795 2038.9

Table 7.5 . Comparison of the dependence graphs.

Benchmark # of dep. in Orig. # of dep. in EFF Orig./EFF

bc-1.06 2:18 � 1010 4:9 � 105 44489.8
mc-4.5.55 0:69 � 1010 9:6 � 107 71.8

mutt-1.4.2.1i 4:86 � 1010 4:21 � 107 1154.4
pine-4.44 1:95 � 1010 2:68 � 107 727.6
pine-4.44 2:78 � 1010 1:55 � 108 179.4
squid-2.3 1:1 � 1010 1:93 � 106 5699.5

Table 7.4 compares the numbers of events before and after event reduction. The

reduction factors range from 20.1 to 48644.0, which very well explain why the fast
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forwarded executions become so short. Table 7.5 presents the numbers of the exercised

data dependences in the original and the fast forwarded executions. Note that these

numbers are collected after the intra-basic-block optimization as introduced in chapter

3 which eliminates considerable redundant dependences. The numbers for the fast

forwarded executions are much smaller. The constructed dependence graphs can be

stored even without further compression as discussed in chapter 5.

7.6 Summary

Dynamic slicing can be enabled on a set of long running programs by developing

a novel execution fast forwarding technique. Fast forwarding can be achieved by

driving the replay with a reduced event log �le. Given a desired execution region, a

large portion of the events are not relevant to replaying it.Meta slicing is designed

to eliminate this redundancy in the log �le. With the execution fast forwarding

technique, the replayed execution becomes substantially shorter and yet the wanted

execution region is precisely reproduced. The reduction factors of the sizes of dynamic

dependence graphs range from 179.4 to 44489.8. As a result, dynamic slicing can be

practically applied to isolate the cause e�ect chain leading to the failure.
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Chapter 8

Related Work

8.1 Pro�ling

Program pro�les for realistic program runs can greatly bene�t applications such as

compiler optimization, architecture simulation and fault locations. This is because

program pro�les can be analyzed to identify program characteristics that can then

be exploited by researchers to guide designs of superior compilers and architectures

or be analyzed by programmers to nail program bugs. The key challenge is that

the amounts of pro�le information generated during realistic program runs can be

extremely large.

One approach to reducing the amount of pro�le data is by usinglossy compression

or summarization techniques. Lossy compression of varietyof pro�les has been carried

out including, dynamic dependence pro�les in [7], dynamic control 
ow in [9], and

dynamic values in [19]. Although for many applications summarization is adequate,

for others they have proved to be inadequate. For example, ithas been shown that

summarization of dynamic data dependences results in high levels of inaccuracy in

dynamic data slices [87].

Researchers have developed lossless compression techniques to limit the space re-

quired to store di�erent types of pro�les. Lossless compression techniques for several

di�erent types of pro�les have been separately studied. Compressed representations

of control 
ow traces can be found in [53, 89]. These pro�les can be analyzedfor pres-

ence of hot program paths or traces [53] which have been exploited for performing

path sensitive optimizations [79, 15, 32] and path-sensitive prediction techniques [45].

Value pro�les have been compressed using value predictors [16] and used toperform

code specialization [19], data compression [90], value speculation [56], and value en-
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coding [78].Address pro�les have also been compressed [21] and used for identifying

hot data streams that exhibit data locality which can help in�nding cache conscious

data layouts [68] and developing data prefetching mechanisms [22, 47].

Compared to the individual types of pro�les, the uni�ed WET representation en-

hanced with the tier compression strategy described in chapters 3 and 5 provides high

compression rate and easy access to multiple types of pro�les. This greatly bene�ts

dynamic slicing based fault location techniques. Moreover, it leads to exploration of

advanced compiler and architecture techniques which simultaneously exploit multiple

types of pro�les.

Note that in [13], Bhansali et al. use a �ne grained checkpointing mechanism

which is able to reproduce di�erent kinds of execution pro�les. They do not store

the complete pro�les, instead, they store the minimal amount of pro�le information,

which is a subset of the complete load value trace, in order toreplay the execution

and retrieve other pro�les. They achieve the space e�ciencyof 0.1 bit per instruction.

This approach essentially provides the capability of random re-execution at certain

level, which does not directly serve the demands of many applications. For example,

in the application of dynamic slicing, even though re-execution is able to recover de-

pendences inside the re-executed window, how to process andstore these dependences

is still an issue that needs to be addressed. In other words, their technique and our

WET representation can be complementary.

8.2 Fault Location

The other main focus of this dissertation is on fault location. The work related to

this dissertation is presented in the following subsections.
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8.2.1 Slicing Based Approaches

Dynamic slicing was introduced as an aid to debugging by Korel and Laski in 1988

[49]. Ever since then, dynamic slicing has been studied by many researchers [6, 48, 50,

42, 64, 73]. Agrawal et al. [42] proposed subtracting a single correct execution trace

from a single failed execution trace. In [64], Pan and Spa�ord presented a family of

heuristics for fault localization using dynamic slicing. Compared to these previous

works, this dissertation is the �rst one to compare the e�ectiveness of dynamic slicing

algorithms in fault location.

Since the main idea of slicing is to focus the user's attention on a relevant subset of

statements in the program, it is only natural that researchers have explored techniques

for narrowing the relevant set of statements beyond what is contained in a single slice.

In this dissertation, novel slicing criteria are identi�edwhose dynamic slices are highly

e�ective in capturing faulty code and therefore their intersection also captures the

faulty code. In [34], adynamic chop, which is the dynamic dependence subgraph

between two nodes, is used to derive dynamic path conditions. A constraint solver is

then used to test whether the derived conditions can be satis�ed. If so, the resolved

input serves as a witness to the failure. If not, there is no dependence between the two

nodes even though there exists a dependence path between them. In [20] di�erence

of backward slices is computed with the aim of eliminating those statements that are

less likely to be faulty from the backward slice of an erroneous output. While [20] is

a set based technique, the con�dence analysis presented in chapter 6 is a �ne grained

graph based pruning technique, which provides the capability of discretely pruning

multiple instances of a static statement. In addition, con�dence analysis, for the �rst

time, considers the mappings between executed statement instances when computing

the likelihood of a statement instance being faulty.
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8.2.2 Statistical Approaches

Recently a large body of research has been focused on the use of statistical techniques

for fault location [66, 46, 57, 55, 57, 27]. Harrold et al. [36] compared the spectra of

passing and failing runs and found that failing runs tend to have unusual coverage

spectra. Jones et al. [46] ranked each statement according to its ratio of failing

tests to correct tests and used this information to assist fault location. Liblit et al.

[55] describe a sampling framework and present an approach to guess and eliminate

predicates to isolate a deterministic bug. For isolating nondeterministic bugs, they use

statistical regression techniques to identify predicatesthat are highly correlated with

the program failure. Liu et al. [57] present a more accurate statistical model which

eliminates some of the limitations in [55] by considering the situation of only some

executedinstancesof a single predicate being faulty. Fei and Midki� [27] present an

online bug detecting technique, in which a correct model is built by training through a

set of correct runs, and any signi�cant deviation from this model in the detection run

raises a 
ag. Renieris and Reiss [66] focus on the di�erence between the failing run

and a singlepassing run with similar spectra as a means to narrow down thesearch

space for faulty code. Xie and Engler [77] show that many redundancies in programs

correspond to hard program errors. Hangal and Lam [35] identi�ed the causes of some

programming errors in Java programs by observing violations of program invariants.

Dynamic slicing di�ers from statistical debugging techniques in several signi�cant

ways and to some extent it is complimentary to statistical techniques. Statistical de-

bugging techniques rely on dynamic information (e.g., patterns of predicate outcomes)

collected for a certain number of program runs. In contrast,in dynamic slicing, all

slices are based upon the dynamic dependence graph of a single failed program run.

Statistical techniques have the capability of predicting the future happening of a fail-

ure while dynamic slicing is essentially a post-mortem analysis of the failure. On the

other hand, the ability to predict in statistical techniques comes with the cost of false
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positives, i.e., some correct statements are indicated as faulty. Another important

characteristic of statistical techniques is that they usually rank program statements

according to a score which captures the likelihood of the statement representing faulty

code. The programmer can then examine the statements in the order of ranking to

locate faulty code. Ranking can also be used in conjunction with dynamic slicing.

In [52, 88] the statements in backward dynamic slices are ranked according to their

dependence distances from the point at which erroneous output is observed and in

con�dence analysis they are ranked according tocon�dencevalues which measure the

likelihood that they produced correct results. Finally, statistical techniques usually

simply provide a ranked fault candidate set. In the procedure of debugging, the

programmer usually follows certain cause e�ect relations to locate the bug instead of

inspecting individual statements one by one. In contrast, dynamic slicing usually pro-

duces a dynamic dependence graph, the dependence chains which essentially express

the cause-e�ect relations.

8.2.3 State Based Approaches

Zeller has presented a series of techniques [41, 81, 24] fromisolating the failure induc-

ing input to isolating cost-e�ect chains in both space and time. The basic idea is to

�nd the speci�c part of the input/program state which is critical to the program fail-

ure by minimizing the di�erence between theinput/program state leading to a passing

run and that leading to a failing run. Techniques presented in this dissertation can

be combined with Zeller's technique in many aspects, for instance, the isolatedcauses

are perfect slicing criteria starting from which dynamic slicing may produce a much

smaller fault candidate set than from the failure point.

In [39], He and Gupta present a technique which systematically searches for the �x

to a program error. Given the trace of a failed execution and the post-condition, the

technique traverses the trace backward and identi�es the execution points at which
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the actual program state deviates from the state inferred from the post-condition.

The technique then automatically searches for possible modi�cations to the program

which can make the two program states consistent. These modi�cations are further

validated using other test cases.

Some of the techniques presented in this dissertation, suchas predicate switching,

also approach the problem of fault location through programstate investigation and

manipulation.

8.2.4 Static Analysis Based Approaches

The techniques presented in this dissertation are dynamic techniques. There is a large

group of static techniques for fault location. The philosophy of static fault location

is to �rst construct a correct model by specifying certain rules, and then statically

analyze the target program to see if these rules are strictlyfollowed. LCLint [26] uses

annotations to represent assumptions about function interface, variables, and type ex-

plicit. Constraints derived from these annotations are checked at compile time. Any

violations are considered as potential errors.CQaul [29] proposes a technique in which

users annotate their programs with 
ow sensitive type quali�ers. The correctness of

the programs can be checked by inference.Pre�x [18] presents an important method-

ology of using static program analysis to detect memory related program errors. The

idea is to symbolically execute the functions, modeling thememory and reporting any

inconsistencies.Slam[10] uses techniques from program analysis, model checking, and

automated deduction to check whether a C program follows certain rules in using an

API. Blast [40] is a similar technique which performs model checking onthe safety

properties of C programs. In [44], the code of a procedure is modeled as relational

formulas, which are conjoined with the negation of the procedure's speci�cation. A

constraint solver is used to either verify the procedure or generate counter-examples.

In [76], Xie and Aiken translates C programs into boolean formulas such that boolean
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satis�ability solvers can be used to e�ciently check any violations to certain speci�ed

properties.

In [60], Manevich et al. propose using post-mortem static analysis to locate faults.

The idea is that after knowing the type of failure and the program location where

the failure happened, static analysis such as pointer analysis can be performed more

e�ectively such that the 
ow of a value can be more accuratelypin-pointed. This tech-

nique reveals an interesting direction of combining both dynamic and static analysis

in fault location.

Compared to dynamic approaches, static techniques usuallyrequire programmers

to write annotations or speci�cations. A large number of false positives are usu-

ally incurred by the conservative nature of underlying static analysis such as pointer

analysis.

To address some of these existing issues, a new stream of research has been con-

ducted on using data mining techniques to automatically discover speci�cations. In

[25], Engler et al. propose inferring rules, called programbeliefs, from a large pool of

source code. These beliefs are crosschecked and contradictions are reported. While

[25] only captures pair-wise programming rules, Li and Zhou[54] improve this tech-

nique by mining more complex rules. In [8], Ammons et al. propose discovering

formal speci�cations from executions instead of source code. Dynamine [58] identi�es

highly correlated method calls as well as common bug �xes by mining source code

check-ins.
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Chapter 9

Conclusions

9.1 Contributions

This dissertation makes contributions in the area of dynamic slicing. In particular, it

greatly improves the e�ciency and e�ectiveness of dynamic slicing. As a debugging

aid, dynamic slicing techniques have been invented for a long time. However, most of

the previous research was performed on toy programs and small runs, which dimin-

ished the enthusiasm about dynamic slicing. This dissertation discusses techniques

that make dynamic slicing practical and e�ective in locating faults in realistic pro-

grams. More speci�cally, it provides answers to the following four research questions.

Q1: How expensive is precise dynamic slicing for real progra ms and re-

alistic runs? This dissertation shows that existing dynamic slicing algorithms are

quite expensive because they require constructing dynamicdependence graphs, which

can take up to 2 gigabytes space, if fully constructed, for the execution of 130 millions

intermediate statements for realistic programs. A demand driven strategy alleviates

the space problem but the slicing times are very slow. Because in a demand driven

algorithm, a partial dependence graph is constructed on demand in response to a

slicing request. Computing multiple slices require repeatedly traversing the execu-

tion traces, which is a procedure that could take up to 20 minutes for a 130 millions

intermediate statements run. To conclude, without sophisticated designs, existing

dynamic slicing algorithms are very expensive in terms of space and time.

Q2: Can dynamic slicing be made practical? Precise dynamic slicing is so

expensive because it constructs huge dynamic dependence graphs(DDGs). Traversing
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through dynamic information contained in DDGs takes signi�cant amount of time.

Therefore, optimizations on dynamic dependence graphs, which reduce the sizes of

generated graphs, save both space and time. The redundancies in DDGs can be

eliminated by two means: a large portion of the dynamic dependence edges in a DDG

can be replaced by static edges because they can be inferred from static edges; a DDG

can be transformed to enable more inferences. The results show that after applying all

the optimizations, only 6% of the original information needto be represented explicitly

in a DDG. For the same 130 millions intermediate statements run, the optimized DDG

takes the space of 94 megabytes on an average. Note that optimizations are di�erent

from compression. The latter incurs overhead in traversal while the former speeds

it up. As shown by the experiments, it takes 16 seconds to traverse the optimized

DDGs on average.

In order to further reduce the space consumption, compression techniques can

be added on top of optimizations. A novel generic bidirectional stream compres-

sion technique is introduced, which can achieve high compression rate and at the

same time is capable of traversing the compressed stream in both the forward and

backward directions. The optimizations and compression are so e�ective that more

information such as value pro�les can be embedded in DDGs. The information can

be used to compute more proli�c slices such as slices annotated with the computed

values and prune dynamic slices. A new dynamic representation { Whole Execution

Traces(WETs), is proposed to represent control 
ow, dependence, and value pro�les

in a uni�ed form. WETs can store the complete dynamic information of a 3.9 billion

intermediate statements run into 2 gigabytes space. Due to the overhead introduced

by compression, computation of a slice on WETs has a 6X slowdown, which is still

much faster than a demand driven algorithm.

In order to scale the technique to long running programs, this dissertation also

discusses using checkpointing in combination with dynamicslicing. Checkpoints are

usually created in an interval of minutes while dynamic slicing, even after applying all
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the proposed optimization and compression techniques, canonly handle executions

of up to a few seconds. An execution fast forwarding technique is proposed to signi�-

cantly reduce the replay execution of a checkpoint intervalsuch that dynamic slicing

becomes applicable. To conclude, dynamic slicing becomes much more practical with

all these techniques.

Q3: Is dynamic slicing really useful in debugging real softw are errors?

Experimental results in this dissertation indicate that existing dynamic slicing algo-

rithms are quite successful in containing the root causes ofreal software errors once

they can be applied. However, they are not always applicablesince a faulty program

may not produce any output as a result of faulty code getting executed. In such cases,

a wrong output value cannot be recognized, as a result, a slice cannot be computed.

Moreover, existing algorithms usually produce large slices which require signi�cant

amount of time to manually inspect. Finally, there are casesin which conventional

backward dynamic slicing techniques fail to capture the root causes due to the ex-

istence of potential dependences. Even though relevant slicing was proposed as a

plausible solution, the conservative nature of this technique limits its success.

Q4: Can the fault location e�ectiveness of dynamic slicing b e improved?

The limitations originate from one fact { existing algorithms compute the backward

slice(BwS) on only one type of evidence in a failed run, whichis the wrong output.

However, a software error may manifest itself in many di�erent ways during a failed

run. In other words, more evidences can be collected to help analyze the error. In

this dissertation, new types of dynamic slices are proposedwhich take advantage of

di�erent types of evidences. Aforward slice (FwS) is computed forfailure inducing

input di�erence, which is identi�ed by the delta debuggingtechnique. A bidirectional

slice (BiS) is computed for acritical predicate, switching the outcome of which pro-

duces the expected correct output. The experimental results show that while each
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of BwS, FwS, and BiS may not be applicable for all the real errors under consider-

ation, each error can be captured by at least one type of slice. The three types of

slices are all applicable for most of the errors, which givesrise to the opportunity of

combining them together. Considering the wrong output, minimal failing inducing

input di�erence, and critical predicates together reduce the fault candidate set to 36%

of the smallest of the three sets computed by considering individual evidences. For

some errors, even after combining multiple types of slices may still include a lot of

statements which are highly unlikely to be wrong. These statements can be pruned

from the slice by considering the values produced by their executions. A new dy-

namic analysis,con�dence analysis, is proposed to take advantage of value pro�les.

The analysis computes an estimate for the likelihood of a statement execution being

faulty. The statements that are considered correct by the analysis are pruned from

the slice. This analysis can reduce a backward dynamic sliceto 41% on average.

9.2 Future Directions

Improving relevant slicing through predicate switching. Execution omission

errors are known to be resistant to conventional backward dynamic slicing. These er-

rors lead to failure at runtime by means of certain statements not being executed while

they should have been if there were no errors, which contradicts the fact that dynamic

slicing techniques are mostly based on the information collected from executed state-

ments. Although researchers have attempted to tackle this problem through relevant

slicing, the static nature of this technique becomes a barrier to success. Based on

the observation that these errors are hard to detect becausesome of the dependences

are invisible, it is possible to enforce the execution of theomitted code by switching

predicates such that those implicit dependences become tractable. Once these hidden

dependences are disclosed, dynamic slices can be computed and e�ectively pruned to

produce fault candidate sets containing the execution omission errors.
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Dynamic slicing multithreaded programs. As multi-core and shared memory

systems are becoming more and more popular, multithreadingbecomes a very impor-

tant programming model. Compared to sequential programs, multithreaded programs

are a lot harder to debug because an error may be caused by the interactions between

threads. This also implies that a good automatic debugging technique is much more

demanded for multithreaded programs. This dissertation shows that dynamic slicing

is very e�ective in locating faults in sequential programs.It would be very interesting

to see how dynamic slicing can be applied on multithreaded programs.

Dynamic matching based on WET. In many application areas, including the

areas of software debugging, maintenance, and piracy detection, situations arise in

which there is a need for comparing two versions of a program.An existing class

of algorithms that compare two program versions are static di�erencing algorithms.

While these algorithms report static di�erences between code sequences, in situations

where the two program versions correspond to the original and transformed versions

of a program, it is desirable to match code sequences that dynamically behave the

same even though they statically appear to be di�erent. Let us consider the appli-

cations such as software piracy detection and debugging of optimized code. In these

two applications, one program version is created by transforming the other version.

In the �rst application, code obfuscation transformationsmay have been performed

to hide piracy. In the second application, transformationsare applied to generate an

optimized version from the unoptimized version. Since the transformed (obfuscated

or optimized) code looks very di�erent from the original code, static di�erencing

approaches will not work for the above applications. The WETrepresentation pro-

posed in this dissertation e�ciently captures the completedynamic information of an

execution and thus could serve as a basis for dynamic matching techniques.
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Other applications of WET. Collection, maintenance, and analysis of detailed

program pro�les for realistic program runs can greatly bene�t compiler and archi-

tecture researchers. This is because program pro�les can beanalyzed to identify

program characteristics that can then be exploited by researchers to guide the design

of superior compilers and architectures. While individualtypes of pro�les have been

studied, the correlations of multiple types of pro�les and their e�ects on architecture

and compiler design remain unexplored. For example, hardware predictors usually

predict based on control 
ow histories. It would be interesting to study whether

considering value pro�les in the mean time can improve the prediction accuracy.
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